The Investigation of Interlaminar Failures Caused by Production Parameters in Case of Additive Manufactured Polymers
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Layer Thickness
3.2. Printing Speed
3.3. Printing Temperature
4. Analysis and Discussion
- i = [0.05 mm; 0.1 mm; 0.2 mm; 0.3 mm; 0.4 mm]
- j = [200 °C; 210 °C; 215 °C; 220 °C; 225 °C]
- k = [5 mm/s; 10 mm/s; 20 mm/s; 40 mm/s; 60 mm/s]
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Horváth, Á.M.; Ficzere, P. Rapid prototyping in medical sciences. Prod. Eng. Arch./Arch. Inz. Prod. 2015, 8, 28–31. [Google Scholar]
- Tofail, S.A.M.; Koumoulos, E.P.; Bandyopadhyay, A.; Bose, S.; O’Donoghue, L.; Charitidis, C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater. Today 2018, 21, 22–37. [Google Scholar] [CrossRef]
- Lopez de Armentia, S.; del Real, J.C.; Paz, E.; Dunne, N. Advances in Biodegradable 3D Printed Scaffolds with Carbon-Based Nanomaterials for Bone Regeneration. Materials 2020, 13, 5083. [Google Scholar] [CrossRef] [PubMed]
- García-Dominguez, A.; Claver, J.; Sebastián, M.A. Optimization Methodology for Additive Manufacturing of Customized Parts by Fused Deposition Modeling (FDM). Application to a Shoe Heel. Polymers 2020, 12, 2119. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Vahabzadeh, S.; Bandyopadhyay, A. Bone tissue engineering using 3D printing. Mater. Today 2013, 16, 496–504. [Google Scholar] [CrossRef]
- Aversa, A.; Fino, P. Special Issue on Materials Development by Additive Manufacturing Techniques. Appl. Sci. 2020, 10, 5119. [Google Scholar] [CrossRef]
- Ma, X.P. Scaffolds for tissue fabrication. Mater. Today 2004, 7, 30–40. [Google Scholar] [CrossRef]
- Bittner, S.M.; Guo, J.L.; Melchiorri, A.; Mikos, A.G. Three-dimensional printing of multilayered tissue engineering scaffolds. Mater. Today 2018, 21, 861–874. [Google Scholar] [CrossRef]
- Wang, C.; Tan, X.P.; Tor, S.B.; Lim, C.S. Machine learning in additive manufacturing: State-of-the-art and perspectives. Addit. Manuf. 2020, 36, 1–20. [Google Scholar] [CrossRef]
- Rojek, I.; Mikołajewski, D.; Dostatni, E.; Macko, M. AI-Optimized Technological Aspects of the Material Used in 3D Printing Processes for Selected Medical Applications. Materials 2020, 13, 5437. [Google Scholar] [CrossRef]
- García-Dominguez, A.; Claver, J.; Sebastián, M.A. Integration of Additive Manufacturing, Parametric Design, and Optimization of Parts Obtained by Fused Deposition Modeling (FDM). A Methodological Approach. Polymers 2020, 12, 1993. [Google Scholar] [CrossRef]
- Chen, G.; Xu, Y.; Kwok, P.C.L.; Kang, L. Pharmaceutical Applications of 3D Printing. Addit. Manuf. 2020, 34, 1–12. [Google Scholar]
- Theus, A.S.; Ning, L.; Hwang, B.; Gil, C.; Chen, S.; Wombwell, A.; Mehta, R.; Serpooshan, V. Bioprintability: Physiomechanical and Biological Requirements of Materials for 3D Bioprinting Processes. Polymers 2020, 12, 2262. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.statista.com/statistics/560304/worldwide-survey-3d-printing-top-technologies (accessed on 8 August 2020).
- Available online: https://3dprintingindustry.com/3d-printing-basics-free-beginners-guide#04-processes (accessed on 4 December 2020).
- Ficzere, P.; Borbás, L. Method to reduce the independent constants of orthotropic materials in rapid prototyping. In Proceedings of the 11th Youth Symposium on Experimental Solid Mechanics, Brasov, Romania, 30 May–2 June 2012; pp. 129–135. [Google Scholar]
- Lopes, M.S.; Jardini, A.L.; Filho, R.M. Poly (Lactic Acid) Production for Tissue Engineering Applications. Procedia Eng. 2012, 42, 1402–1413. [Google Scholar] [CrossRef]
- García-Domínguez, A.; Claver, J.; Camacho, A.-M.; Miguel, A.S. Considerations on the Applicability of Test Methods for Mechanical Characterization of Materials Manufactured by FDM. Materials 2020, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Luzanin, O.; Movrin, D.; Stathopoulos, V.; Pandis, P.; Radusin, T. and Guduric, V. Impact of processing parameters on tensile strength, in-process crystallinity and mesostructure in FDM-fabricated PLA specimens. Rapid Prototyp. J. 2019, 25, 1398–1410. [Google Scholar] [CrossRef]
- Ziemian, S.; Okwara, M.; Ziemian, C.W. Tensile and fatigue behavior of layered acrylonitrile butadiene styrene. Rapid Prototyp. J. 2015, 21, 270–278. [Google Scholar] [CrossRef]
- Lalegani Dezaki, M.; Mohd Ariffin, M.K.A. The Effects of Combined Infill Patterns on Mechanical Properties in FDM Process. Polymers 2020, 12, 2792. [Google Scholar] [CrossRef]
- Rajpurohit, S.R.; Dave, H.K. Impact strength of 3D printed PLA using open source FFF-based 3D printer. Prog. Addit. Manuf. 2020, 9, 1–13. [Google Scholar] [CrossRef]
- Song, Y.; Li, Y.; Song, W.; Yee, K.; Lee, K.-Y.; Tagarielli, V.L. Measurements of the mechanical response of unidirectional 3D-printed PLA. Mater. Des. 2017, 123, 154–164. [Google Scholar] [CrossRef]
- Gebrehiwot, S.Z.; Leal, L.E.; Eickhoff, J.N.; Rechenberg, L. The influence of stiffener geometry on flexural properties of 3D printed polylactic acid (PLA) beams. Prog. Addit. Manuf. 2020, 8, 1–11. [Google Scholar]
- Ficzere, P.; Borbás, L. Experimental dynamical analysis of specimens’ material properties manufactured by additive technologies. Mater. Today Proc. 2019, 12, 352–357. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Velidakis, E.; Liebscher, M.; Mechtcherine, V.; Tzounis, L. On the Strain Rate Sensitivity of Fused Filament Fabrication (FFF) Processed PLA, ABS, PETG, PA6, and PP Thermoplastic Polymers. Polymers 2020, 12, 2924. [Google Scholar] [CrossRef]
- Xiangyu, D.; Liqiang, Z.; Zujun, Y.; Xining, X. The Verification of Rail Thermal Stress Measurement System. Period. Polytech. Transpo. Eng. 2020, 48, 45–51. [Google Scholar] [CrossRef]
- Ficzere, P. Experimental Dynamical Analysis and Numerical Simulation of the Material Properties of Parts Made by Fused Deposition Modelling Technologies. Period. Polytech. Transp. Eng. 2020, 48, 221–225. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, T.; Heo, H.; Krokhin, A.; Shi, S.Q.; Dahotre, N.; Choi, T.-Y.; Neogi, A. Novel 2D Dynamic Elasticity Maps for Inspection of Anisotropic Properties in Fused Deposition Modeling Objects. Polymers 2020, 12, 1966. [Google Scholar] [CrossRef]
- Nath, P.; Olson, J.D.; Mahadevan, S.; Lee, Y.T.T. Optimization of fused filament fabrication process parameters under uncertainty to maximize part geometry accuracy. Addit. Manuf. 2020, 35, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Verbeeten, W.M.H.; Lorenzo-Bañuelos, M.; Arribas-Subiñas, P.J. Anisotropic rate-dependent mechanical behavior of Poly(Lactic Acid) processed by Material Extrusion Additive Manufacturing. Addit. Manuf. 2020, 31, 1–14. [Google Scholar] [CrossRef]
- Hassanifard, S.; Hashemi, S.M. On the strain-life fatigue parameters of additive manufactured plastic materials through fused filament fabrication process. Addit. Manuf. 2020, 32, 1–8. [Google Scholar] [CrossRef]
- Fischer, T.; Kuhn, B.; Rieck, D.; Schulz, A.; Trieglaff, R.; Wilms, M.B. Fatigue Cracking of Additively Manufactured Materials—Process and Material Perspectives. Appl. Sci. 2020, 10, 5556. [Google Scholar] [CrossRef]
- Available online: https://storage.googleapis.com/impresoras/PLA/Ficha_tecnica_BQPLA_EN.pdf (accessed on 20 March 2020).
- Sanchez, F.A.C.; Boudaoud, H.; Hoppe, S.; Camargo, M. Polymer recycling in an open-source additive manufacturing context: Mechanical issues. Addit. Manuf. 2017, 17, 87–105. [Google Scholar] [CrossRef]
- Agassant, J.-F.; Pigeonneau, F.; Sardo, L.; Vincent, M. Flow analysis of the polymer spreading during extrusion additive manufacturing. Addit. Manuf. 2019, 29, 1–10. [Google Scholar] [CrossRef]
- Bhandari, S.; Lopez-Anido, R.A. Discrete-Event Simulation Thermal Model for Extrusion-Based Additive Manufacturing of PLA and ABS. Materials 2020, 13, 4985. [Google Scholar] [CrossRef] [PubMed]
- Mbow, M.M.; Marin, P.R.; Pourroy, F. Extruded diameter dependence on temperature and velocity in the fused deposition modeling process. Prog. Addit. Manuf. 2020, 5, 139–152. [Google Scholar] [CrossRef]
- Czikovszkiy, T.; Nagy, P.; Gaál, J. Basics of Polimertechnololgy [in Hungarian: A polimertechnika alapjai]; BME: Budapest, Hungary, 2013; p. 308. [Google Scholar]
- Lee, C.Y.; Liu, C.Y. The influence of forced-air cooling on a 3D printed PLA part manufactured by fused filament fabrication. Addit. Manuf. 2019, 25, 196–203. [Google Scholar] [CrossRef]
- Tóth, D.; Kovács, P.Z.; Tisza, M. The Investigation and Optimization of 3D Printing Parametres [in Hungarian: A 3D nyomtatás (FDM) paramétereinek vizsgálata, optimalizálása]. Machines 2016, 67, 29–32. [Google Scholar]
- Available online: https://reprap.org/wiki/Calibration (accessed on 20 March 2020).
- Available online: https://www.youtube.com/watch?v=O70fJMMBmAI (accessed on 20 March 2020).
- Charlon, S.; Soulestin, J. Thermal and geometry impacts on the structure and mechanical properties of part produced by polymer additive manufacturing. J. Appl. Polym. Sci. 2020, 137, 49038. [Google Scholar] [CrossRef]
- Farhad, O.; Tahseen, F.A.; Hind, B.A. Influence of Layer Thickness on Impact Property of 3D-Printed PLA. Int. Res. J. Eng. Technol. 2018, 5, 1–4. [Google Scholar]
No. | Temperature [°C] | Layer Thickness [mm] | Printing Speed [mm/s] |
---|---|---|---|
1. | 200 | 0.1 | 40 |
2. | 210 | 0.1 | 40 |
3. | 215 | 0.1 | 40 |
4. | 220 | 0.1 | 40 |
5. | 225 | 0.1 | 40 |
6. | 220 | 0.1 | 5 |
7. | 220 | 0.1 | 10 |
8. | 220 | 0.1 | 20 |
9. | 220 | 0.1 | 60 |
10. | 220 | 0.05 | 40 |
11. | 220 | 0.2 | 40 |
12. | 220 | 0.3 | 40 |
13. | 220 | 0.4 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ficzere, P.; Lukacs, N.L.; Borbas, L. The Investigation of Interlaminar Failures Caused by Production Parameters in Case of Additive Manufactured Polymers. Polymers 2021, 13, 556. https://doi.org/10.3390/polym13040556
Ficzere P, Lukacs NL, Borbas L. The Investigation of Interlaminar Failures Caused by Production Parameters in Case of Additive Manufactured Polymers. Polymers. 2021; 13(4):556. https://doi.org/10.3390/polym13040556
Chicago/Turabian StyleFiczere, Peter, Norbert Laszlo Lukacs, and Lajos Borbas. 2021. "The Investigation of Interlaminar Failures Caused by Production Parameters in Case of Additive Manufactured Polymers" Polymers 13, no. 4: 556. https://doi.org/10.3390/polym13040556
APA StyleFiczere, P., Lukacs, N. L., & Borbas, L. (2021). The Investigation of Interlaminar Failures Caused by Production Parameters in Case of Additive Manufactured Polymers. Polymers, 13(4), 556. https://doi.org/10.3390/polym13040556