Non-Isothermal Crystallization Kinetics of Poly(ethylene glycol) and Poly(ethylene glycol)-B-Poly(ε-caprolactone) by Flash DSC Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Test Instrument
2.3. Non-Isothermal Crystallization Process
3. Results and Discussion
3.1. Crystallization of Samples under Various Cooling Rates
3.2. Non-Isothermal Crystallization Kinetic Analysis
3.2.1. Ozawa Equation
3.2.2. Avrami Equation
3.2.3. Combined Avrami Equation and Ozawa Equation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, M.; Zhao, Q.; Wang, Y.; Zhang, C.; Mo, Z.; Cao, S. Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212. Polymer 2003, 44, 2537–2545. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Q. Non-isothermal crystallization behaviors of polyamide 6/clay nanocomposites. Eur. Polym. J. 2002, 38, 1383–1389. [Google Scholar] [CrossRef]
- Nojima, S.; Ono, M.; Ashida, T. Crystallization of block copolymers II. morphological study of poly(ethylene glycol)-poly(ε-caprolactone) block copolymers. Polym. J. 1992, 24, 1271–1280. [Google Scholar] [CrossRef]
- Gioffredi, E.; Cassulo, G.; Frache, A.; Maffettone, P.L. iPP crystallization: Micro and nano fillers effects. AIP Conf. Proc. 2010, 1255, 120–122. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Li, X.; Guo, X.; Li, Z.; Zou, M. Curing and characteristics of N,N,N’,N’-tetraepoxypropyl-4,4′-diaminodiphenylmethane epoxy resin-based buoyancy material. Polymers 2019, 11, 1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iervolino, E.; Van Herwaarden, A.W.; Van Herwaarden, F.G.; Van De Kerkhof, E. Thermochimica Acta Temperature calibration and electrical characterization of the differential scanning calorimeter chip UFS1 for the Mettler-Toledo Flash DSC 1. Thermochim. Acta 2011, 522, 53–59. [Google Scholar] [CrossRef]
- Mathot, V.; Pyda, M.; Pijpers, T.; Vanden, G.; Van De Kerkhof, E.; Van Herwaarden, S.; Van Herwaarden, F.; Leenaers, A. The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): First findings on polymers. Thermochim. Acta 2011, 522, 36–45. [Google Scholar] [CrossRef]
- Van Herwaarden, S.; Iervolino, E.; Van Herwaarden, F.; Wijffels, T.; Leenaers, A. Thermochimica Acta Design, performance and analysis of thermal lag of the UFS1 twin-calorimeter chip for fast scanning calorimetry using the Mettler-Toledo Flash DSC 1. Thermochim. Acta 2011, 522, 46–52. [Google Scholar] [CrossRef]
- He, Y.; Xie, K.; Wang, Y.; Zhou, D.; Hu, W. Characterization of polymer crystallization kinetics via fast-scanning chip-calorimetry. Wuli Huaxue Xuebao/Acta Phys. Chim. Sin. 2020, 36, 1–12. [Google Scholar] [CrossRef]
- Cavallo, D.; Gardella, L.; Alfonso, G.C.; Mileva, D.; Androsch, R. Effect of comonomer partitioning on the kinetics of mesophase formation in random copolymers of propene and higher α-olefins. Polymer 2012, 53, 4429–4437. [Google Scholar] [CrossRef]
- Chen, Y.; Yao, L.; Yang, C.; Zhang, L.; Zheng, P.; Liu, A.; Shen, Q.D. In-depth understanding of interfacial crystallization: Via Flash DSC and enhanced energy storage density in ferroelectric P(VDF-CTFE)/Au NRs nanocomposites for capacitor application. Soft Matter 2018, 14, 7714–7723. [Google Scholar] [CrossRef] [PubMed]
- Avrami, M. Kinetics of phase change. I: General theory. J. Chem. Phys. 1939, 7, 1103–1112. [Google Scholar] [CrossRef]
- Ozawa, T. Kinetics of non-isothermal. Polymer 1971, 12, 150–158. [Google Scholar] [CrossRef]
- Liu, T.; Mo, Z.; Wang, S.; Zhang, H. Isothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) (PEEKK). Eur. Polym. J. 1997, 33, 1405–1414. [Google Scholar] [CrossRef]
- Sun, H.; Feng, J.; Wang, J.; Yu, B.; Zhang, Z.; Sun, H.; Feng, J.; Wang, J.; Yu, B.; Zhang, Z. Monte Carlo Simulation Study of Isothermal Crystallization Kinetics of Polyethylene Glycol Monte Carlo Simulation Study of Isothermal Crystallization Kinetics of Polyethylene Glycol. Polym.-Plast. Technol. Eng. 2011, 50, 1552–1556. [Google Scholar] [CrossRef]
- Wei, T.; Zheng, B.; Yi, H.; Gao, Y.; Guo, W. Thermal Analysis and Non-Isothermal Kinetics of Poly (ethylene glycol) with Different Molecular Weight. Polym. Eng. Sci. 2014, 54, 2872–2876. [Google Scholar] [CrossRef]
- Coburn, N.; Douglas, P.; Kaya, D.; Gupta, J.; Mcnally, T. Advanced Industrial and Engineering Polymer Research Isothermal and non-isothermal crystallization kinetics of composites of poly (propylene) and MWCNTs. Adv. Ind. Eng. Polym. Res. 2018, 1, 99–110. [Google Scholar] [CrossRef]
- Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667. [Google Scholar] [CrossRef]
- Brandt, J.V.; Piazza, R.D.; dos Santos, C.C.; Vega-Chacón, J.; Amantéa, B.E.; Pinto, G.C.; Magnani, M.; Piva, H.L.; Tedesco, A.C.; Primo, F.L.; et al. Synthesis and colloidal characterization of folic acid-modified PEG-b-PCL Micelles for methotrexate delivery. Colloids Surf. B Biointerfaces 2019, 177, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.Y.; Shi, S.; Wang, X.H.; Wang, Y.J.; Fu, S.Z.; Dong, P.W.; Chen, L.J.; Zhao, X.; Wei, Y.Q.; Qian, Z.Y. Novel composite drug delivery system for honokiol delivery: Self-assembled poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) micelles in thermosensitive poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) hydrogel. J. Phys. Chem. B 2009, 113, 10183–10188. [Google Scholar] [CrossRef] [PubMed]
- Villamil, J.C.; Parra-Giraldo, C.M.; Pérez, L.D. Enhancing the performance of PEG-b-PCL copolymers as precursors of micellar vehicles for amphotericin B through its conjugation with cholesterol. Colloids Surf. A Physicochem. Eng. Asp. 2019, 572, 79–87. [Google Scholar] [CrossRef]
- Behl, A.; Parmar, V.S.; Malhotra, S.; Chhillar, A.K. Biodegradable diblock copolymeric PEG-PCL nanoparticles: Synthesis, characterization and applications as anticancer drug delivery agents. Polymer 2020, 207, 122901. [Google Scholar] [CrossRef]
- Gökçe Kocabay, Ö.; İsmail, O. Preparation and optimization of biodegradable self-assembled PCL-PEG-PCL nano-sized micelles for drug delivery systems. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 328–337. [Google Scholar] [CrossRef]
- Sun, J.; He, C.; Zhuang, X.; Jing, X.; Chen, X. The crystallization behavior of poly(ethylene glycol)-poly(ε- caprolactone) diblock copolymers with asymmetric block compositions. J. Polym. Res. 2011, 18, 2161–2168. [Google Scholar] [CrossRef]
- Sun, J.; Hong, Z.; Yang, L.; Tang, Z.; Chen, X.; Jing, X. Study on crystalline morphology of poly(L-lactide)-poly(ethylene glycol) diblock copolymer. Polymer 2004, 45, 5969–5977. [Google Scholar] [CrossRef]
- Zhu, W.; Xie, W.; Tong, X.; Shen, Z. Amphiphilic biodegradable poly(CL-b-PEG-b-CL) triblock copolymers prepared by novel rare earth complex: Synthesis and crystallization properties. Eur. Polym. J. 2007, 43, 3522–3530. [Google Scholar] [CrossRef]
- Gong, C.Y.; Shi, S.; Dong, P.W.; Kan, B.; Gou, M.L.; Wang, X.H.; Li, X.Y.; Luo, F.; Zhao, X.; Wei, Y.Q.; et al. Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int. J. Pharm. 2009, 365, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.L.; Jiao, L.; Zeng, J.B.; Zhang, M.; Xiao, L.P.; Yang, K.K.; Wang, Y.Z. Crystallization behavior and morphology of double crystalline poly(butylene succinate)-poly(ethylene glycol) multiblock copolymers. Polymer 2012, 53, 3780–3790. [Google Scholar] [CrossRef]
- Takeshita, H.; Fukumoto, K.; Ohnishi, T.; Ohkubo, T.; Miya, M.; Takenaka, K.; Shiomi, T. Formation of lamellar structure by competition in crystallization of both components for crystalline e crystalline block copolymers. Polymer 2006, 47, 8210–8218. [Google Scholar] [CrossRef]
- Bogdanov, B.; Vidts, A.; Van Den Bulcke, A.; Verbeeck, R.; Schacht, E. Synthesis and thermal properties of poly (ethylene g lycol)—poly (-ca prolactone) copolymers. Polymer 1998, 39, 1631–1636. [Google Scholar] [CrossRef]
- Shiomi, T.; Imai, K.; Takenaka, K.; Takeshita, H.; Hayashi, H.; Tezuka, Y. Appearance of double spherulites like concentric circles for block -poly (e-caprolactone). Polymer 2001, 42, 3233–3239. [Google Scholar] [CrossRef]
Cooling Rate (K/s) | PEG | PEG-PCL | ||||||
---|---|---|---|---|---|---|---|---|
T0 (°C) | D (°C) | t1/2 (s) | T1/2 (°C) | T0 (°C) | D (°C) | t1/2 (s) | T1/2 (°C) | |
50 | −2 | 13 | 0.1726 | −10.63 | 5 | 27 | 0.2340 | −6.70 |
100 | −5 | 15 | 0.0968 | −14.68 | 2 | 25 | 0.1777 | −15.77 |
200 | −8 | 21 | 0.0605 | −20.10 | −7 | 26 | 0.0866 | −24.32 |
300 | −10 | 30 | 0.0487 | −24.61 | −13 | 30 | 0.0535 | −29.06 |
400 | −12 | 32 | 0.0393 | −27.72 | −15 | 32 | 0.0429 | −32.17 |
500 | −13 | 31 | 0.0323 | −29.13 | −18 | 32 | 0.0315 | −33.74 |
600 | −17 | 28 | 0.0221 | −30.26 | −20 | 30 | 0.0248 | −34.87 |
PEG | PEG-PCL | ||||
---|---|---|---|---|---|
T/°C | m | k0(T) | T/°C | m | k0(T) |
−14 | 5.07 | 13.5 × 108 | −21 | 3.92 | 1.82 × 108 |
−15 | 4.28 | 3.63 × 108 | −22 | 3.66 | 0.65 × 108 |
−16 | 3.96 | 1.25 × 108 | −23 | 3.47 | 0.36 × 108 |
−17 | 3.77 | 0.79 × 108 | −24 | 3.33 | 0.24 × 108 |
−18 | 3.67 | 0.74 × 108 | −25 | 3.21 | 0.18 × 108 |
= 4.15 | = 3.52 |
Φ (K/s) | n | Zt (s−n) | k (s−1) | 1/t1/2 (s−1) | (Zt/ln2)1/n (s−1) |
---|---|---|---|---|---|
50 | 4.95 | 3.36 × 103 | 5.16 | 5.79 | 5.55 |
100 | 4.45 | 1.99 × 104 | 9.25 | 10.33 | 10.04 |
200 | 4.32 | 1.13 × 105 | 14.78 | 16.53 | 16.09 |
300 | 3.89 | 7.92 × 104 | 32.84 | 20.53 | 19.96 |
400 | 3.61 | 7.92 × 104 | 43.05 | 25.44 | 25.18 |
500 | 3.46 | 9.20 × 104 | 52.92 | 30.96 | 30.24 |
600 | 2.14 | 2.00 × 103 | 34.87 | 45.25 | 41.39 |
Φ (K/s) | n | Zt (s−n) | k (s−1) | 1/t1/2 (s−1) | (Zt/ln2)1/n (s−1) |
---|---|---|---|---|---|
50 | 4.03 | 2.47 × 102 | 3.92 | 4.27 | 4.29 |
100 | 3.62 | 3.87 × 102 | 5.19 | 5.63 | 5.73 |
200 | 2.87 | 4.83 × 102 | 8.61 | 11.55 | 9.78 |
300 | 3.40 | 1.13 × 104 | 15.56 | 18.69 | 17.48 |
400 | 4.02 | 2.11 × 105 | 21.11 | 23.31 | 23.12 |
500 | 3.31 | 5.93 × 104 | 27.67 | 31.75 | 30.91 |
600 | 2.65 | 1.13 × 104 | 33.84 | 40.32 | 38.86 |
X(T) | PEG | PEG-PCL | ||||
---|---|---|---|---|---|---|
b | F(T) | r2 | b | F(T) | r2 | |
30% | 1.36 | 3.8574 | 0.99642 | 0.91 | 18.3568 | 0.99171 |
40% | 1.39 | 3.8962 | 0.99625 | 0.92 | 19.4919 | 0.99519 |
50% | 1.42 | 3.8962 | 0.99566 | 0.92 | 20.6972 | 0.99718 |
60% | 1.45 | 3.8962 | 0.99494 | 0.93 | 21.5419 | 0.99746 |
70% | 1.49 | 3.8574 | 0.99409 | 0.94 | 22.1980 | 0.99704 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zou, M.; Lei, L.; Xi, L. Non-Isothermal Crystallization Kinetics of Poly(ethylene glycol) and Poly(ethylene glycol)-B-Poly(ε-caprolactone) by Flash DSC Analysis. Polymers 2021, 13, 3713. https://doi.org/10.3390/polym13213713
Li X, Zou M, Lei L, Xi L. Non-Isothermal Crystallization Kinetics of Poly(ethylene glycol) and Poly(ethylene glycol)-B-Poly(ε-caprolactone) by Flash DSC Analysis. Polymers. 2021; 13(21):3713. https://doi.org/10.3390/polym13213713
Chicago/Turabian StyleLi, Xiaodong, Meishuai Zou, Lisha Lei, and Longhao Xi. 2021. "Non-Isothermal Crystallization Kinetics of Poly(ethylene glycol) and Poly(ethylene glycol)-B-Poly(ε-caprolactone) by Flash DSC Analysis" Polymers 13, no. 21: 3713. https://doi.org/10.3390/polym13213713
APA StyleLi, X., Zou, M., Lei, L., & Xi, L. (2021). Non-Isothermal Crystallization Kinetics of Poly(ethylene glycol) and Poly(ethylene glycol)-B-Poly(ε-caprolactone) by Flash DSC Analysis. Polymers, 13(21), 3713. https://doi.org/10.3390/polym13213713