Mechanical Properties of Biocomposites Using Polypropylene and Sesame Oil Cake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extrusion Process
2.3. Injection Modling Process
2.4. Sample Specifications
2.5. Test Methods
3. Results and Discussion
3.1. Crystallinity
3.2. Thermal Properties
3.3. Mechanical Properties
3.4. SEM Images
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koch, H.M.; Calafat, A.M. Human body burdens of chemicals used in plastic manufacture. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2063–2078. [Google Scholar] [CrossRef]
- Halden, R.U. Plastics and health risks. Annu. Rev. Public Health 2010, 31, 179–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharon, C.; Sharon, M. Studies on biodegradation of polyethylene terephthalate: A synthetic polymer. J. Microbiol. Biotechnol. Res. 2012, 2, 248–257. [Google Scholar]
- La Mantia, F.P.; Morreale, M. Green composites: A brief review. Compos. Part A Appl. Sci. Manuf. 2011, 42, 579–588. [Google Scholar] [CrossRef]
- Satyanarayana, K.G.; Arizaga, G.G.C.; Wypych, F. Biodegradable composites based on lignocellulosic fibers—An overview. Prog. Polym. Sci. 2009, 34, 982–1021. [Google Scholar] [CrossRef]
- Mukherjee, T.; Kao, N. PLA Based Biopolymer Reinforced with Natural Fibre: A Review. J. Polym. Environ. 2011, 19, 714–725. [Google Scholar] [CrossRef]
- Madyan, O.A.; Wang, Y.; Corker, J.; Zhou, Y.; Du, G.; Fan, M. Classification of wood fibre geometry and its behaviour in wood poly(lactic acid) composites. Compos. Part A Appl. Sci. Manuf. 2020, 133. [Google Scholar] [CrossRef]
- Cui, Y.; Lee, S.; Noruziaan, B.; Cheung, M.; Tao, J. Fabrication and interfacial modification of wood/recycled plastic composite materials. Compos. Part A Appl. Sci. Manuf. 2008, 39, 655–661. [Google Scholar] [CrossRef]
- Bisanda, E.; Ansell, M.P. Properties of sisal-CNSL composites. J. Mater. Sci. 1992, 27, 1690–1700. [Google Scholar] [CrossRef]
- Joseph, K.; Thomas, S.; Pavithran, C.; Brahmakumar, M. Tensile properties of short sisal fiber-reinforced polyethylene composites. J. Appl. Polym. Sci. 1993, 47, 1731–1739. [Google Scholar] [CrossRef]
- Sohn, J.; Ryu, Y.; Yun, C.-S.; Zhu, K.; Cha, S. Extrusion Compounding Process for the Development of Eco-Friendly SCG/PP Composite Pellets. Sustainability 2019, 11, 1720. [Google Scholar] [CrossRef] [Green Version]
- Sesame Seed and Oil in World. Available online: http://www.fao.org (accessed on 3 April 2021).
- Elkhaleefa, A.; Shigidi, I. Optimization of Sesame Oil Extraction Process Conditions. Adv. Chem. Eng. Sci. 2015, 05, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Mohdaly, A.A.A.; Smetanska, I.; Ramadan, M.F.; Sarhan, M.A.; Mahmoud, A. Antioxidant potential of sesame (Sesamum indicum) cake extract in stabilization of sunflower and soybean oils. Ind. Crop. Prod. 2011, 34, 952–959. [Google Scholar] [CrossRef]
- Machado, C.M.; Benelli, P.; Tessaro, I.C. Sesame cake incorporation on cassava starch foams for packaging use. Ind. Crop. Prod. 2017, 102, 115–121. [Google Scholar] [CrossRef]
- Jacob, J.; Mitaru, B.; Mbugua, P.; Blair, R. The feeding value of Kenyan sorghum, sunflower seed cake and sesame seed cake for broilers and layers. Anim. Feed Sci. Technol. 1996, 61, 41–56. [Google Scholar] [CrossRef]
- Nascimento, E.M.d.G.C.d.; Carvalho, C.W.P.; Takeiti, C.Y.; Freitas, D.D.G.C.; Ascheri, J.L.R. Use of sesame oil cake (Sesamum indicum L.) on corn expanded extrudates. Food Res. Int. 2012, 45, 434–443. [Google Scholar] [CrossRef] [Green Version]
- Ray, D.; Das, K.; Ghosh, S.; Bandyopadhyay, N.; Sahoo, S.; Mohanty, A.K.; Misra, M. Novel materials from sesame husks and unsaturated polyester resin. Ind. Eng. Chem. Res. 2010, 49, 6069–6074. [Google Scholar] [CrossRef]
- Wu, C.S.; Hsu, Y.C.; Yeh, J.T.; Liao, H.T.; Jhang, J.J.; Sie, Y.Y. Biocompatibility and characterization of renewable agricultural residues and polyester composites. Carbohydr. Polym. 2013, 94, 584–593. [Google Scholar] [CrossRef]
- Siracusa, V.; Rocculi, P.; Romani, S.; Dalla Rosa, M. Biodegradable polymers for food packaging: A review. Trends Food Sci. Technol. 2008, 19, 634–643. [Google Scholar] [CrossRef]
- Hongjun, C.; Xiaolie, L.; Dezhu, M.; Jianmin, W.; Hongsheng, T. Structure and properties of impact copolymer polypropylene. I. Chain structure. J. Appl. Polym. Sci. 1999, 71, 93–101. [Google Scholar] [CrossRef]
- Murayama, K.; Suzuki, S.; Kojima, Y.; Kobori, H.; Ito, H.; Ogoe, S.; Okamoto, M. The Effects of Different Types of Maleic Anhydride-Modified Polypropylene on the Physical and Mechanical Properties of Polypropylene-based Wood/Plastic Composites. J. Wood Chem. Technol. 2018, 38, 224–232. [Google Scholar] [CrossRef]
- Gryta, M. Surface modification of polypropylene membrane by helium plasma treatment for membrane distillation. J. Membr. Sci. 2021, 628. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.; Drzal, L.T. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Compos. Interfaces 2012, 8, 313–343. [Google Scholar] [CrossRef]
- Kast, O.; Musialek, M.; Geiger, K.; Bonten, C. Influences on particle shape in underwater pelletizing processes. In Proceedings of the AIP Conference Proceedings; 2014; pp. 20–23. [Google Scholar]
- ASTM. Standard Test Method for Tensile Properties of Plastics. 2014. D638-14. Available online: http://www.astm.org (accessed on 3 April 2021).
- ASTM. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. 2017. D790-17. Available online: http://www.astm.org (accessed on 3 April 2021).
- ASTM. Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. 2018. D256-10. Available online: http://www.astm.org (accessed on 3 April 2021).
- Housmans, J.-W.; Gahleitner, M.; Peters, G.W.; Meijer, H.E. Structure–property relations in molded, nucleated isotactic polypropylene. Polymer 2009, 50, 2304–2319. [Google Scholar] [CrossRef]
- Mofokeng, J.P.; Luyt, A.S.; Tábi, T.; Kovács, J. Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. J. Thermoplast. Compos. Mater. 2011, 25, 927–948. [Google Scholar] [CrossRef]
- Lee, K.H.; Byon, S. A study on the phase separation and mechanical properties of wood flour-polypropylene composites. Elastomers Compos. 2013, 48, 216–220. [Google Scholar] [CrossRef]
- Guo, C.; Li, L.; Li, H. Evaluation of interfacial compatibility in wood flour/polypropylene composites by grafting isocyanate silane coupling agent on polypropylene. J. Adhes. Sci. Technol. 2019, 33, 468–478. [Google Scholar] [CrossRef]
- Hodgkinson, J.M. Mechanical Testing of Advanced Fibre Composites; Woodhead Publishing: Cambridge, UK, 2000. [Google Scholar]
- García-García, D.; Carbonell, A.; Samper, M.D.; García-Sanoguera, D.; Balart, R. Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Compos. Part B Eng. 2015, 78, 256–265. [Google Scholar] [CrossRef]
- Wypych, G. Handbook of Fillers; ChemTec Publishing: Scarborough, ON, Canada, 2016. [Google Scholar]
- Prabu, V.A.; Kumaran, S.T.; Uthayakumar, M.; Manikandan, V. Influence of redmud particle hybridization in banana/sisal and sisal/glass composites. Part. Sci. Technol. 2018, 36, 402–407. [Google Scholar] [CrossRef]
- Mohamed, W.Z.W.; Baharum, A.; Ahmad, I.; Abdullah, I.; Zakaria, N.E. Effects of fiber size and fiber content on mechanical and physical properties of mengkuang reinforced thermoplastic natural rubber composites. BioResources 2018, 13, 2945–2959. [Google Scholar] [CrossRef]
SOC Powder Classification | ||||
---|---|---|---|---|
Mesh Number | Cluster | 30 | 40 | 50 |
Particle Size (μm) | N/A | 600 | 425 | 300 |
Amounts (%) | 32.31 ± 1.778 | 64.16 ± 4.995 | 3.52 ± 0.341 | 0.01 ± 0.001 |
Process Conditions | |||||
---|---|---|---|---|---|
Extrusion Temp. (°C) | Die | Heater 1 | Heater 2 | Heater 3 | Heater 4 |
170 | 170 | 170 | 170 | 160 | |
Die Diameter (Φ) | 3 | ||||
Screw RPM | 80 |
Specimen Type | Specimen for Mechanical Properties | Specimen for SEM, XRD | ||||
---|---|---|---|---|---|---|
Injecion Temp.(°C) | End Nozzle | Nozzle | Heater 1 | Heater 2 | Heater 3 | Heater 4 |
200 | 200 | 190 | 180 | 170 | 160 | |
Injection Press. (MPa) | 10 | 5 | ||||
Injection Speed (%) | 100 | 50 | ||||
Holding Press. (MPa) | 6.7 | 5 | ||||
Holding Time (s) | 15 | 5 | ||||
Cooling Time (s) | 30 | 25 |
Specimens | Matrix (Content (wt%)) | Filler (Content (wt%)) | MAPP (Content (phr)) |
---|---|---|---|
HPP | Homo-PP (100) | - | - |
HPS10 | Homo-PP (90) | SOC 30 mesh (10) | - |
HPS20 | Homo-PP (80) | SOC 30 mesh (20) | - |
HPS30 | Homo-PP (70) | SOC 30 mesh (30) | - |
HPS40 | Homo-PP (60) | SOC 30 mesh (40) | - |
HPS50 | Homo-PP (50) | SOC 30 mesh (50) | - |
HPSm30 | Homo-PP (70) | SOC 30 mesh (30) | (3) |
HPS30s | Homo-PP (70) | SOC 40 mesh (30) | - |
BPP | Block-PP (100) | - | - |
BPS10 | Block-PP (90) | SOC 30 mesh (10) | - |
BPS20 | Block-PP (80) | SOC 30 mesh (20) | - |
BPS30 | Block-PP (70) | SOC 30 mesh (30) | - |
BPS40 | Block-PP (60) | SOC 30 mesh (40) | - |
BPS50 | Block-PP (50) | SOC 30 mesh (50) | - |
SOC Powder | HPP | HPS30 | BPP | BPS30 | |
---|---|---|---|---|---|
SOC Contents (wt%) | - | 0 | 30 | 0 | 30 |
Xc (%) | 29.11 | 58.51 | 54.41 | 48.61 | 41.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Kim, D.H.; Ryu, Y.; Kim, K.H.; Jeong, S.H.; Kim, T.Y.; Cha, S.W. Mechanical Properties of Biocomposites Using Polypropylene and Sesame Oil Cake. Polymers 2021, 13, 1602. https://doi.org/10.3390/polym13101602
Lee J-H, Kim DH, Ryu Y, Kim KH, Jeong SH, Kim TY, Cha SW. Mechanical Properties of Biocomposites Using Polypropylene and Sesame Oil Cake. Polymers. 2021; 13(10):1602. https://doi.org/10.3390/polym13101602
Chicago/Turabian StyleLee, Ju-Heon, Dong Hwi Kim, Youngjae Ryu, Kwan Hoon Kim, Seong Ho Jeong, Tae Yang Kim, and Sung Woon Cha. 2021. "Mechanical Properties of Biocomposites Using Polypropylene and Sesame Oil Cake" Polymers 13, no. 10: 1602. https://doi.org/10.3390/polym13101602
APA StyleLee, J.-H., Kim, D. H., Ryu, Y., Kim, K. H., Jeong, S. H., Kim, T. Y., & Cha, S. W. (2021). Mechanical Properties of Biocomposites Using Polypropylene and Sesame Oil Cake. Polymers, 13(10), 1602. https://doi.org/10.3390/polym13101602