Synthesis of Bio-Based Poly(Butylene Adipate-co-Butylene Itaconate) Copolyesters with Pentaerythritol: A Thermal, Mechanical, Rheological, and Molecular Dynamics Simulation Study
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Sample Preparation
2.3. Identification of PBABI Copolyesters
2.4. Thermal Analysis of PBABI Copolyesters
2.5. Mechanical Properties of PBABI Copolyesters
2.6. Rheological Test and X-ray Diffraction (XRD) of PBABI Copolyesters
2.7. All-Atom Molecular Dynamics Simulation Procedures
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Díaz, A.; Katsarava, R.; Puiggalí, J. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: From polyesters to poly(ester amide)s. Int. J. Mol. Sci. 2014, 15, 7064–7123. [Google Scholar] [CrossRef] [PubMed]
- Douka, A.; Vouyiouka, S.; Papaspyridi, L.-M.; Papaspyrides, C.D. A review on enzymatic polymerization to produce polycondensation polymers: The case of aliphatic polyesters, polyamides and polyesteramides. Prog. Polym. Sci. 2018, 79, 1–25. [Google Scholar] [CrossRef]
- Simpson, J.M.; Mallon, P.E.; McLeary, D.J.B. Synthesis and Characterization of Unsaturated Polyesters for Use in Multi-Vesiculated Particles (MVPs). Master’s Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2010. [Google Scholar]
- Vert, M. Aliphatic polyesters: Great degradable polymers that cannot do everything †. Biomacromolecules 2005, 6, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Zia, K.M.; Noreen, A.; Zuber, M.; Tabasum, S.; Mujahid, M. Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review. Int. J. Biol. Macromol. 2016, 82, 1028–1040. [Google Scholar] [CrossRef]
- Chan, H.; Cho, C.; Hsu, K.; He, C.; Kuo, C.; Chu, C.; Chen, Y.; Chen, C.; Rwei, S. Smart wearable textiles with breathable properties and repeatable shaping in in vitro orthopedic support from a novel biomass thermoplastic copolyester. Macromol. Mater. Eng. 2019, 1900103. [Google Scholar] [CrossRef]
- Hsu, K.-H.; Chen, C.-W.; Wang, L.-Y.; Chan, H.-W.; He, C.-L.; Cho, C.-J.; Rwei, S.-P.; Kuo, C.-C. Bio-based thermoplastic poly(butylene succinate-co-propylene succinate) copolyesters: Effect of glycerol on thermal and mechanical properties. Soft Matter 2019, 15, 9710–9720. [Google Scholar] [CrossRef]
- Chen, C.-W.; Hsu, T.-S.; Rwei, S.-P. Effect of ethylenediaminetetraacetic acid on unsaturated poly(Butylene adipate-co-butylene itaconate) Copolyester with low-melting point and controllable hardness. Polymers 2019, 11, 611. [Google Scholar] [CrossRef]
- Chen, C.-W.; Hsu, T.-S.; Huang, K.-W.; Rwei, S.-P. Effect of 1,2,4,5-benzenetetracarboxylic acid on unsaturated poly(butylene adipate-co-butylene itaconate) copolyesters: Synthesis, non-isothermal crystallization kinetics, thermal and mechanical properties. Polymers 2020, 12, 1160. [Google Scholar] [CrossRef]
- Amarasekara, A.S.; Ha, U.; Okorie, N.C. Renewable polymers: Synthesis and characterization of poly(levulinic acid-pentaerythritol). J. Polym. Sci. Part Polym. Chem. 2018, 56, 955–958. [Google Scholar] [CrossRef]
- Brannigan, R.P.; Walder, A.; Dove, A.P. Application of functional diols derived from pentaerythritol as chain extenders in the synthesis of novel thermoplastic polyester-urethane elastomers. Polym. Chem. 2019, 10, 5236–5241. [Google Scholar] [CrossRef]
- Duan, K.; He, Y.; Li, Y.; Liu, J.; Zhang, J.; Hu, Y.; Lin, R.; Wang, X.; Deng, W.; Li, L. Machine-learning assisted coarse-grained model for epoxies over wide ranges of temperatures and cross-linking degrees. Mater. Des. 2019, 183, 108130. [Google Scholar] [CrossRef]
- Hacker, M.C.; Klouda, L.; Ma, B.B.; Kretlow, J.D.; Mikos, A.G. Synthesis and characterization of injectable, thermally and chemically gelable, amphiphilic poly(N-isopropylacrylamide)-based macromers. Biomacromolecules 2008, 9, 1558–1570. [Google Scholar] [CrossRef] [PubMed]
- Kricheldorf, H.R.; Behnken, G. Biodegradable hyperbranched aliphatic polyesters derived from pentaerythritol. Macromolecules 2008, 41, 5651–5657. [Google Scholar] [CrossRef]
- Liu, C.; Qian, Z.; Gu, Y.; Fan, L.; Li, J.; Chao, G.; Jia, W.; Tu, M. Synthesis, characterization, and thermal properties of biodegradable aliphatic copolyester based on ε-caprolactone, adipic acid, and 1,6-hexanediol. Mater. Lett. 2006, 60, 31–38. [Google Scholar] [CrossRef]
- Liu, G.-C.; Zhang, W.-Q.; Zhou, S.-L.; Wang, X.-L.; Wang, Y.-Z. Improving crystallization and processability of PBS via slight cross-linking. RSC Adv. 2016, 6, 68942–68951. [Google Scholar] [CrossRef]
- Lu, J.; Wu, L.; Li, B.-G. Long chain branched poly(butylene succinate-co-terephthalate) copolyesters using pentaerythritol as branching agent: Synthesis, thermo-mechanical, and rheological properties. J. Appl. Polym. Sci. 2017, 134, 44544. [Google Scholar] [CrossRef]
- Mahmud, H.A.; Salih, N.; Salimon, J. Oleic acid based polyesters of trimethylolpropane and pentaerythritol for biolubricant application. Malays. J. Anal. Sci. 2015, 19, 9. [Google Scholar]
- Murillo, E.A.; Vallejo, P.P.; López, B.L. Characterization of hydroxylated hyperbranched polyesters of fourth and fifth generation. E-Polym. 2010, 10, 1–12. [Google Scholar] [CrossRef]
- Nagata, M.; Ibuki, H.; Sakai, W.; Tsutsumi, N. Synthesis, characterization, and enzymatic degradation of novel regular network aliphatic polyesters based on pentaerythritol. Macromolecules 1997, 30, 6525–6530. [Google Scholar] [CrossRef]
- Park, S.Y.; Chun, J.; Jeon, J.Y.; Lee, P.C.; Hwang, Y.; Song, B.G.; Ramos, R.; Ryu, C.Y.; Lee, B.Y. Branched poly(1,4-butylene carbonate-co-terephthalate)s: LDPE-like semicrystalline thermoplastics. J. Polym. Sci. Part Polym. Chem. 2015, 53, 914–923. [Google Scholar] [CrossRef]
- Shen, J.; Lin, X.; Liu, J.; Li, X. Effects of cross-link density and distribution on static and dynamic properties of chemically cross-linked polymers. Macromolecules 2019, 52, 121–134. [Google Scholar] [CrossRef]
- Shim, Y.S.; Chun, B.C.; Chung, Y.-C. Thermomechanical properties and shape memory effect of PET-PEG copolymers cross-linked with pentaerythritol. Fibers Polym. 2006, 7, 328–332. [Google Scholar] [CrossRef]
- Soccio, M.; Finelli, L.; Lotti, N.; Marchese, P.; Siracusa, V.; Munari, A. A novel hyperbranched polyester based on 2,2-bis(hydro xylmethyl)butyric acid: Synthesis and characterization. E-Polym. 2007, 7, 1–14. [Google Scholar] [CrossRef]
- Tieghi, G.; Levi, M.; Fallini, A. Characterization of crosslinked polyester resins by dynamic mechanical properties. Polymer 1992, 33, 3748–3750. [Google Scholar] [CrossRef]
- Tow, G.M.; Maginn, E.J. Fully atomistic molecular dynamics simulations of hydroxyl-terminated polybutadiene with insights into hydroxyl aggregation. Macromolecules 2020, 53, 2594–2605. [Google Scholar] [CrossRef]
- Uto, K.; Yamamoto, K.; Hirase, S.; Aoyagi, T. Temperature-responsive cross-linked poly(ε-caprolactone) membrane that functions near body temperature. J. Control. Release 2006, 110, 408–413. [Google Scholar] [CrossRef]
- Waig Fang, S.; De Caro, P.; Pennarun, P.-Y.; Vaca-Garcia, C.; Thiebaud-Roux, S. Synthesis and characterization of new polyesters based on renewable resources. Ind. Crops Prod. 2013, 43, 398–404. [Google Scholar] [CrossRef][Green Version]
- Yang, S.; Wu, Z.-H.; Yang, W.; Yang, M.-B. Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym. Test. 2008, 27, 957–963. [Google Scholar] [CrossRef]
- Žagar, E.; Žigon, M. Aliphatic hyperbranched polyesters based on 2,2-bis(methylol)propionic acid—Determination of structure, solution and bulk properties. Prog. Polym. Sci. 2011, 36, 53–88. [Google Scholar] [CrossRef]
- Chen, C.-W.; Huang, C.-I. Effects of intra/inter-molecular potential parameters, length and grafting density of side-chains on the self-assembling behavior of poly(3′-alkylthiophene)s in the ordered state. Polymer 2015, 77, 189–198. [Google Scholar] [CrossRef]
- Sun, H.; Ren, P.; Fried, J.R. The COMPASS force field: Parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 1998, 8, 229–246. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Tang, T.; Moyori, T.; Takasu, A. Isomerization-free polycondensations of cyclic anhydrides with diols and preparation of polyester gels containing Cis or Trans carbon double bonds via photo-cross-linking and isomerization in the gels. Macromolecules 2013, 46, 5464–5472. [Google Scholar] [CrossRef]
- Brännström, S.; Finnveden, M.; Johansson, M.; Martinelle, M.; Malmström, E. Itaconate based polyesters: Selectivity and performance of esterification catalysts. Eur. Polym. J. 2018, 103, 370–377. [Google Scholar] [CrossRef]
- Tang, T.; Takasu, A. Facile synthesis of unsaturated polyester-based double-network gels via chemoselective cross-linking using Michael addition and subsequent UV-initiated radical polymerization. RSC Adv. 2015, 5, 819–829. [Google Scholar] [CrossRef]
- Woo, E.M.; Wu, M.C. Thermal and X-ray analysis of polymorphic crystals, melting, and crystalline transformation in poly(butylene adipate). J. Polym. Sci. Part B Polym. Phys. 2005, 43, 1662–1672. [Google Scholar] [CrossRef]
- Wang, H.; Gao, Z.; Yang, X.; Liu, K.; Zhang, M.; Qiang, X.; Wang, X. Epitaxial crystallization behavior of poly(butylene adipate) on orientated POLY(butylene succinate) substrate. Polymers 2018, 10, 110. [Google Scholar] [CrossRef]
- Gan, Z.; Abe, H.; Doi, Y. Temperature-induced polymorphic crystals of poly(butylene adipate). Macromol. Chem. Phys. 2002, 203, 2369–2374. [Google Scholar] [CrossRef]
- Hou, C.; Li, H.; Sun, X.; Yan, S.; Wang, Y.; Chen, S. The dependence of the β-to-α phase transition behavior of poly(1,4-butylene adipate) on phase separated morphology in its blends with poly(vinylidene fluoride). Phys. Chem. Chem. Phys. 2018, 20, 15718–15724. [Google Scholar] [CrossRef]
- Minke, R.; Blackwell, J. Polymorphic structures of poly(tetramethylene adipate). J. Macromol. Sci. Part B 1979, 16, 407–417. [Google Scholar] [CrossRef]
- Noguchi, K.; Kondo, H.; Ichikawa, Y.; Okuyama, K.; Washiyama, J. Molecular and crystal structure of poly(tetramethylene adipate) α form based on synchrotron X-ray fiber diffraction. Polymer 2005, 46, 10823–10830. [Google Scholar] [CrossRef]
- Chen, C.-W.; Hsu, T.-S.; Rwei, S.-P. Isothermal kinetics of poly(butylene adipate-co-butylene itaconate) copolyesters with ethylenediaminetetraacetic acid. ACS Omega 2020, 5, 3080–3089. [Google Scholar] [CrossRef] [PubMed]













| Sample | IV (dL g−1) | Tg (°C) | Tc (°C) | ΔHc (J g−1) | Tm (°C) | ΔHm (J g−1) | Td−5% (°C) |
|---|---|---|---|---|---|---|---|
| BA/BI = 10/0 | 0.68 | −54.6 | 28.2 | −48.3 | 51.5, 59.5 | 42.3 | 344.7 |
| BA/BI = 9/1 | 0.61 | −53.3 | 23.6 | −50.2 | 45.5, 52.4 | 41.3 | 338.0 |
| BA/BI = 8/2 | 0.62 | −48.1 | 1.3 | −35.6 | 26.9, 34.8 | 33.2 | 318.7 |
| BA/BI = 7/3 | 0.57 | −50.1 (DSC) | −9.1 | −30.8 | 19.5, 28.4 | 27.1 | 312.6 |
| BA/BI = 6/4 | 0.52 | −50.3 (DSC) | n/a | n/a | n/a | n/a | 301.9 |
| BA/BI = 5/5 | 0.38 | −52.9 (DSC) | n/a | n/a | n/a | n/a | 261.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-W.; Mao, H.-I.; Yang, Z.-Y.; Huang, K.-W.; Yan, H.-C.; Rwei, S.-P. Synthesis of Bio-Based Poly(Butylene Adipate-co-Butylene Itaconate) Copolyesters with Pentaerythritol: A Thermal, Mechanical, Rheological, and Molecular Dynamics Simulation Study. Polymers 2020, 12, 2006. https://doi.org/10.3390/polym12092006
Chen C-W, Mao H-I, Yang Z-Y, Huang K-W, Yan H-C, Rwei S-P. Synthesis of Bio-Based Poly(Butylene Adipate-co-Butylene Itaconate) Copolyesters with Pentaerythritol: A Thermal, Mechanical, Rheological, and Molecular Dynamics Simulation Study. Polymers. 2020; 12(9):2006. https://doi.org/10.3390/polym12092006
Chicago/Turabian StyleChen, Chin-Wen, Hsu-I Mao, Zhi-Yu Yang, Kuan-Wei Huang, Hao-Chen Yan, and Syang-Peng Rwei. 2020. "Synthesis of Bio-Based Poly(Butylene Adipate-co-Butylene Itaconate) Copolyesters with Pentaerythritol: A Thermal, Mechanical, Rheological, and Molecular Dynamics Simulation Study" Polymers 12, no. 9: 2006. https://doi.org/10.3390/polym12092006
APA StyleChen, C.-W., Mao, H.-I., Yang, Z.-Y., Huang, K.-W., Yan, H.-C., & Rwei, S.-P. (2020). Synthesis of Bio-Based Poly(Butylene Adipate-co-Butylene Itaconate) Copolyesters with Pentaerythritol: A Thermal, Mechanical, Rheological, and Molecular Dynamics Simulation Study. Polymers, 12(9), 2006. https://doi.org/10.3390/polym12092006

