Synergistic Effect of Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets on the Monotonic and Fatigue Properties of Uncracked and Cracked Epoxy Composites
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Preparation of Specimens
2.2. Tests of Mechanical Properties
3. Results and Discussion
3.1. Monotonic Tensile Tests
3.2. Tensile Fatigue Tests
3.3. Mode I Fracture Toughness Tests
3.4. Fatigue Crack Growth Rate Tests
3.5. Facture Surfaces Study
4. Conclusions and Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A-Appl. S. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Li, B.; Zhong, W.H. Review on polymer/graphite nanoplatelet nanocomposites. J. Mater. Sci. 2011, 46, 5595–5614. [Google Scholar] [CrossRef]
- Atif, R.; Shyha, I.; Inam, F. Mechanical, thermal, and electrical properties of graphene-epoxy nanocomposites—A review. Polymers 2016, 8, 281. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sharma, K.; Dixit, A.R. A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J. Mater. Sci. 2019, 54, 5992–6026. [Google Scholar] [CrossRef]
- Shukla, M.K.; Sharma, K. Effect of carbon nanofillers on the mechanical and interfacial properties of epoxy based nanocomposites: A review. Polym. Sci. Ser. B 2019, 61, 439–460. [Google Scholar] [CrossRef]
- Li, J.; Wong, P.S.; Kim, J.K. Hybrid nanocomposites containing carbon nanotubes and graphite nanoplatelets. Mater. Sci. Eng. A 2008, 483, 660–663. [Google Scholar] [CrossRef]
- Kumar, S.; Sun, L.L.; Caceres, S.; Li, B.; Wood, W.; Perugini, A.; Maguire, R.G.; Zhong, W.H. Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites. Nanotechnology 2010, 21, 105702. [Google Scholar] [CrossRef]
- Yang, S.Y.; Lin, W.N.; Huang, Y.L.; Tien, H.W.; Wang, J.Y.; Ma, C.C.; Li, S.M.; Wang, Y.S. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 2011, 49, 793–803. [Google Scholar] [CrossRef]
- Ren, P.G.; Di, Y.Y.; Zhang, Q.; Li, L.; Pang, H.; Li, Z.M. Composites of ultrahigh-molecular-weight polyethylene with graphene sheets and/or MWCNTs with segregated network structure: Preparation and properties. Macromol. Mater. Eng. 2012, 297, 437–443. [Google Scholar] [CrossRef]
- Chatterjee, S.; Nafezarefi, F.; Tai, N.; Schlagenhauf, L.; Nüesch, F.; Chu, B. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 2012, 50, 5380–5386. [Google Scholar] [CrossRef]
- Das, A.; Kasaliwal, G.R.; Jurk, R.; Boldt, R.; Fischer, D.; Stöckelhuber, K.W.; Heinrich, G. Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study. Compos. Sci. Technol. 2012, 72, 1961–1967. [Google Scholar] [CrossRef]
- Li, W.; Dichiara, A.; Bai, J. Carbon nanotube–graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos. Sci. Technol. 2013, 74, 221–227. [Google Scholar] [CrossRef]
- Zhang, S.; Yin, S.; Rong, C.; Huo, P.; Jiang, Z.; Wang, G. Synergistic effects of functionalized graphene and functionalized multi-walled carbon nanotubes on the electrical and mechanical properties of poly(ether sulfone) composites. Eur. Polym. J. 2013, 49, 3125–3134. [Google Scholar] [CrossRef]
- Pradhan, B.; Srivastava, S.K. Synergistic effect of three-dimensional multi-walled carbon nanotube–graphene nanofiller in enhancing the mechanical and thermal properties of high-performance silicone rubber. Polym. Int. 2014, 63, 1219–1228. [Google Scholar] [CrossRef]
- Montes, S.; Carrasco, P.M.; Ruiz, V.; Cabañero, G.; Grande, H.J.; Labidi, J.; Odriozola, I. Synergistic reinforcement of poly(vinyl alcohol) nanocomposites with cellulose nanocrystal-stabilized graphene. Compos. Sci. Technol. 2015, 117, 26–31. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; She, X.; Vongsvivut, J.; Li, J.; She, F.; Gao, W.; Kong, L. Reinforcement and deformation behaviors of polyvinyl alcohol/graphene/montmorillonite clay composites. Compos. Sci. Technol. 2015, 118, 1–8. [Google Scholar] [CrossRef]
- Cui, X.; Ding, P.; Zhuang, N.; Shi, L.; Song, N.; Tang, S. Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: A morphology-promoted synergistic effect. ACS Appl. Mater. Interfaces 2015, 7, 19068–19075. [Google Scholar] [CrossRef]
- Al-Saleh, M.H. Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites. Synth. Met. 2015, 209, 41–46. [Google Scholar] [CrossRef]
- Moosa, A.A.; Sa, A.R.; Ibrahim, M.N. Mechanical and electrical properties of graphene nanoplates and carbon nanotubes hybrid epoxy nanocomposites. Am. J. Mater. Sci. 2016, 6, 157–165. [Google Scholar]
- Wang, F.; Drzal, L.T.; Qin, Y.; Huang, Z. Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets. Compos. Part A-Appl. S. Manuf. 2016, 87, 10–22. [Google Scholar] [CrossRef]
- Ghaleb, Z.; Mariatti, M.; Ariff, Z. Synergy effects of graphene and multiwalled carbon nanotubes hybrid system on properties of epoxy nanocomposites. J. Reinf. Plast. Compos. 2017, 36, 685–695. [Google Scholar] [CrossRef]
- Wang, J.; Jin, X.; Wu, H.; Guo, S. Polyimide reinforced with hybrid graphene oxide@ carbon nanotube: Toward high strength, toughness, electrical conductivity. Carbon 2017, 123, 502–513. [Google Scholar] [CrossRef]
- Sahu, S.K.; Badgayan, N.D.; Samanta, S.; Sreekanth, P.R. Quasistatic and dynamic nanomechanical properties of HDPE reinforced with 0/1/2 dimensional carbon nanofillers based hybrid nanocomposite using nanoindentation. Mater. Chem. Phys. 2018, 203, 173–184. [Google Scholar] [CrossRef]
- Ribeiro, H.; Trigueiro, J.P.; Owuor, P.S.; Machado, L.D.; Woellner, C.F.; Pedrotti, J.J.; Jaques, Y.M.; Kosolwattana, S.; Chipara, A.; Silva, W.M.; et al. Hybrid 2D nanostructures for mechanical reinforcement and thermal conductivity enhancement in polymer composites. Compos. Sci. Technol. 2018, 159, 103–110. [Google Scholar] [CrossRef]
- Min, C.; Liu, D.; Shen, C.; Zhang, Q.; Song, H.; Li, S.; Shen, X.; Zhu, M.; Zhang, K. Unique synergistic effects of graphene oxide and carbon nanotube hybrids on the tribological properties of polyimide nanocomposites. Tribol. Int. 2018, 117, 217–224. [Google Scholar] [CrossRef]
- Shukla, M.K.; Sharma, K. Effect of functionalized graphene/CNT ratio on the synergetic enhancement of mechanical and thermal properties of epoxy hybrid composite. Mater. Res. Express 2019, 6, 085318. [Google Scholar] [CrossRef]
- Wang, E.; Dong, Y.; Islam, M.Z.; Yu, L.; Liu, F.; Chen, S.; Qi, X.; Zhu, Y.; Fu, Y.; Xu, Z.; et al. Effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites. Compos. Sci. Technol. 2019, 169, 209–216. [Google Scholar] [CrossRef]
- Ren, Y.; Li, F.; Cheng, H.M.; Liao, K. Tension–tension fatigue behavior of unidirectional single-walled carbon nanotube reinforced epoxy composite. Carbon 2003, 41, 2177–2179. [Google Scholar] [CrossRef]
- Zhang, W.; Picu, R.C.; Koratkar, N. Suppression of fatigue crack growth in carbon nanotube composites. Appl. Phys. Lett. 2007, 91, 193109. [Google Scholar] [CrossRef]
- Yu, N.; Zhang, Z.H.; He, S.Y. Fracture toughness and fatigue life of MWCNT/epoxy composites. Mater. Sci. Eng. A 2008, 494, 380–384. [Google Scholar] [CrossRef]
- Bortz, D.R.; Merino, C.; Martin-Gullon, I. Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system. Compos. Sci. Technol. 2011, 71, 31–38. [Google Scholar] [CrossRef]
- Loos, M.R.; Yang, J.; Feke, D.L.; Manas-Zloczower, I. Enhanced fatigue life of carbon nanotube-reinforced epoxy composites. Polym. Eng. Sci. 2012, 52, 1882–1887. [Google Scholar] [CrossRef]
- Rafiee, M.A.; Yavari, F.; Rafiee, J.; Koratkar, N. Fullerene–epoxy nanocomposites-enhanced mechanical properties at low nanofiller loading. J. Nanopart. Res. 2011, 13, 733–737. [Google Scholar] [CrossRef]
- Rafiee, M.A.; Rafiee, J.; Srivastava, I.; Wang, Z.; Song, H.; Yu, Z.Z.; Koratkar, N. Fracture and fatigue in graphene nanocomposites. Small 2010, 6, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Ladani, R.B.; Bhasin, M.; Wu, S.; Ravindran, A.R.; Ghorbani, K.; Zhang, J.; Kinloch, A.J.; Mouritz, A.P.; Wang, C.H. Fracture and fatigue behaviour of epoxy nanocomposites containing 1-D and 2-D nanoscale carbon fillers. Eng. Fract. Mech. 2018, 203, 102–114. [Google Scholar] [CrossRef]
- Ismail, H.; Ramly, A.F.; Othman, N. The effect of carbon black/multiwall carbon nanotube hybrid fillers on the properties of natural rubber nanocomposites. Polym.-Plast. Technol. 2011, 50, 1660–1666. [Google Scholar] [CrossRef]
- Dong, B.; Liu, C.; Lu, Y.; Wu, Y. Synergistic effects of carbon nanotubes and carbon black on the fracture and fatigue resistance of natural rubber composites. J. Appl. Polym. Sci. 2015, 132, 42075. [Google Scholar] [CrossRef]
- Shokrieh, M.M.; Esmkhani, M.; Haghighatkhah, A.R.; Zhao, Z. Flexural fatigue behavior of synthesized graphene/carbon-nanofiber/epoxy hybrid nanocomposites. Mater. Design 2014, 62, 401–408. [Google Scholar] [CrossRef]
- ASTM International. Standard Test. Method for Tensile Properties of Plastics; D638-14; ASTM International: West Conshohocken, PA, USA, 2014; Available online: https://www.astm.org/Standards/D638.htm (accessed on 15 July 2020).
- ASTM International. Standard Test. Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials; D5045-14; ASTM International: West Conshohocken, PA, USA, 2014; Available online: https://www.astm.org/Standards/D5045.htm (accessed on 15 July 2020).
- ASTM International. Standard Test. Method for Measurement of Fatigue Crack Growth Rates; E647-15e1; ASTM International: West Conshohocken, PA, USA, 2015; Available online: https://www.astm.org/Standards/E647.htm (accessed on 15 July 2020).
- Zhang, X.; Liu, T.; Sreekumar, T.V.; Kumar, S.; Moore, V.C.; Hauge, R.H.; Smalley, R.E. Poly(vinylalcohol)/SWNT Composite Film. Nano Lett. 2003, 3, 1285–1288. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Q.; Chen, D. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 2010, 43, 2357–2363. [Google Scholar] [CrossRef]
- Bannantine, J.A.; Comer, J.J.; Handrock, J.L. Fundamentals of Metal Fatigue Analysis, 1st ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1990; pp. 3–4. [Google Scholar]
- Szeluga, U.; Kumanek, B.; Trzebicka, B. Synergy in hybrid polymer/nanocarbon composites. A review. Compos. Part A-Appl. S. Manuf. 2015, 73, 204–231. [Google Scholar] [CrossRef]
- Bortz, D.R.; Heras, E.G.; Martin-Gullon, I. Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites. Macromolecules 2013, 45, 238–245. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Sato, N.; Tölle, F.; Mülhaupt, R.; Fiedler, B.; Schulte, K. Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol. 2014, 97, 90–99. [Google Scholar] [CrossRef]
- Park, Y.T.; Qian, Y.; Chan, C.; Suh, T.; Nejhad, M.G.; Macosko, C.W.; Stein, A. Epoxy toughening with low graphene loading. Adv. Funct. Mater. 2015, 25, 575–585. [Google Scholar] [CrossRef]
- Cha, J.; Kim, J.; Ryu, S.; Hong, S.H. Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets. Compos. Part. B-Eng. 2019, 162, 283–288. [Google Scholar] [CrossRef]
- Kumar, A.; Li, S.; Roy, S.; King, J.A.; Odegard, G.M. Fracture properties of nanographene reinforced EPON 862 thermoset polymer system. Compos. Sci. Technol. 2015, 114, 87–93. [Google Scholar] [CrossRef]
- Moosa, A.A.; Kubba, F.; Raad, M.; Ramazani, A. Mechanical and thermal properties of graphene nanoplates and functionalized carbon-nanotubes hybrid epoxy nanocomposites. Am. J. Mater. Sci. 2016, 6, 125–134. [Google Scholar]
Filler Ratio | Monotonic Tensile Properties | |||
---|---|---|---|---|
MWCNT:GNP | Tensile Modulus, E (MPa) | Yield Strength, σy (MPa) | Ultimate Strength, σult (MPa) | Percent Elongation, εf (%) |
Neat epoxy | 3554.7 ± 70.5 | 52.8 ± 2.7 | 70.8 ± 0.1 | 8.2 ± 0.54 |
Total filler content = 0.2 wt % | ||||
0:10 | 3722.4 ± 28.1 (+4.7) 1 | 53.3 ± 1.6 (+0.9) | 74.2 ± 0.3 (+4.8) | 4.4 ± 0.89 (−46.3) |
1:9 | 3738.2 ± 43.9 (+5.2) | 53.3 ± 0.2 (+0.9) | 77.0 ± 0.04 (+8.8) | 6.9 ± 0.27 (−15.9) |
3:7 | 3474.7 ± 59.2 (−2.2) | 51.0 ± 0.9 (−3.41) | 71.8 ± 1.0 (+1.4) | 5.8 ± 0.43 (−29.3) |
5:5 | 3326.1 ± 32.7 (−6.4) | 44.3 ± 1.8 (−16.1) | 65.5 ± 1.1 (−7.5) | 5.8 ± 0.18 (−29.3) |
7:3 | 3521.0 ± 38.2 (−0.9) | 51.8 ± 0.8 (−1.9) | 75.9 ± 0.3 (+7.2) | 6.8 ± 0.32 (−17.1) |
9:1 | 3511.4 ± 106.1 (−1.2) | 52.9 ± 1.6 (+0.2) | 74.4 ± 0.4 (+5.1) | 6.5 ± 0.78 (−20.7) |
10:0 | 3654.5 ± 37.6 (+2.8) | 54.8 ± 3.7 (+3.8) | 72.4 ± 0.1 (+2.3) | 6.9 ± 0.12 (−15.9) |
Total filler content = 0.4 wt % | ||||
0:10 | 3407.2 ± 42.2 (−4.1) | 52.8 ± 3.8 (+0/.0) | 71.1 ± 2.7 (+0.4) | 6.2 ± 0.73 (−24.4) |
1:9 | 3868.7 ± 58.8 (+8.8) | 55.7 ± 1.6 (+5.5) | 81.6 ± 0.6 (+15.3) | 7.1 ± 0.44 (−13.4) |
3:7 | 3420.8 ± 57.6 (−3.8) | 47.3 ± 2.2 (−10.4) | 70.8 ± 0.6 (+0.0) | 7.8 ± 0.27 (−4.9) |
5:5 | 3590.6 ± 40.1 (+1.0) | 55.0 ± 0.4 (+2.0) | 74.2 ± 2.1 (+4.8) | 6.6 ± 0.18 (−19.5) |
7:3 | 3463.6 ± 9.7 (−2.6) | 49.9 ± 1.7 (−5.5) | 72.7 ± 0.6 (+2.7) | 7.9 ± 0.24 (−3.7) |
9:1 | 3465.7 ± 53.7 (−2.5) | 46.7 ± 0.9 (−11.6) | 71.0 ± 0.2 (+0.3) | 7.8 ± 0.39 (−4.9) |
10:0 | 3835.0 ± 16.1 (+7.9) | 54.2 ± 2.7 (+2.7) | 75.8 ± 1.1 (+7.1) | 7.9 ± 0.16 (−3.7) |
Filler Ratio | 1:9 | 3:7 | 5:5 | 7:3 | 9:1 | |
---|---|---|---|---|---|---|
Studied | ||||||
Properties | ||||||
Monotonic tensile properties1 | ||||||
Tensile modulus | 0.6/12.1 | −6.1/−3.2 | −9.8/−0.8 | −4.2/−6.6 | −4.1/−8.6 | |
Yield strength | −0.3/5.2 | −5.1/−11.1 | −18.0/2.8 | −4.7/−7.2 | −3.2/−13.6 | |
Ultimate strength | 4.0/14.0 | −2.5/−2.4 | −10.6/1.0 | 4.0/−2.3 | 2.5/−5.7 | |
Percent elongation | 48.4/11.5 | 12.6/16.2 | 2.7/−6.4 | 10.6/6.9 | −2.3/0.9 | |
Fatigue strength corresponding to | ||||||
104 cycles | 10.5 | −2.8 | −6.8 | −5.4 | −6.8 | |
105 cycles | 11.4 | −4.7 | −6.9 | −6.8 | −10.3 | |
106 cycles | 11.8 | −6.5 | −7.0 | −8.2 | −13.7 | |
Mode I fracture toughness | 4.9 | 0.9 | −2.4 | −0.3 | −0.6 |
MWCNTs | GNPs | Epoxy Matrix | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
lCNT (nm) | dCNT (nm) | (g/cm3) | ECNT (MPa) | lGNP (nm) | tGNP (nm) | (g/cm3) | EGNP (TPa) | (g/cm3) | EM (MPa) | ||
15,000 | 30 | 0.29 | 60,000 | 4000 | 5 | 1.39 | 1.0 | 1.14 | 3554 |
Filler Ratio (MWCNT:GNP) | Loading Level r (%) | Max. Applied Stress (MPa) | Fatigue Life Nf (cycles) | Fatigue Life Curves | |||
---|---|---|---|---|---|---|---|
Fatigue Strength a | Fatigue Exponent b | Coef. of Determination R2 | Pseudo Fatigue Limit, (MPa) | ||||
0:00 (Neat Epoxy) | 70 | 49.56 | 6,203 | 94.64 | −0.0741 | 0.996 | 34 |
65 | 46.02 | 17,995 | |||||
60 | 42.48 | 50,281 | |||||
55 | 38.94 | 134,088 | |||||
50 | 35.4 | 639,238 | |||||
0:10 | 70 | 49.77 | 10,921 | 101.21 | −0.0743 | 0.977 | 36.26 |
65 | 46.22 | 54,603 | |||||
60 | 42.66 | 109,242 | |||||
55 | 39.11 | 432,690 | |||||
50 | 35.55 | >1,000,000 | |||||
1:9 | 70 | 57.12 | 7,741 | 107.98 | −0.0697 | 0.989 | 41.22 |
65 | 53.04 | 36,070 | |||||
60 | 48.96 | 82,263 | |||||
55 | 44.88 | 340,644 | |||||
50 | 40.8 | >1,000,000 | |||||
3:7 | 70 | 49.56 | 13,240 | 106.04 | −0.0801 | 0.998 | 35.07 |
65 | 46.02 | 37,232 | |||||
60 | 42.48 | 84,852 | |||||
55 | 38.94 | 254,360 | |||||
50 | 35.4 | 924,930 | |||||
5:5 | 75 | 55.65 | 6,136 | 94.24 | −0.0703 | 0.979 | 35.68 |
70 | 51.94 | 25,820 | |||||
65 | 48.23 | 79,835 | |||||
60 | 44.52 | 145,844 | |||||
55 | 40.81 | 581,860 | |||||
7:3 | 70 | 50.89 | 11,950 | 101.14 | −0.0748 | 0.986 | 35.99 |
65 | 47.26 | 21,436 | |||||
60 | 44.82 | 86,999 | |||||
55 | 39.99 | 189,423 | |||||
50 | 36.35 | >1,000,000 | |||||
9:1 | 70 | 49.7 | 14,842 | 109.37 | −0.0834 | 0.995 | 34.55 |
65 | 46.15 | 28,631 | |||||
60 | 42.6 | 72,395 | |||||
55 | 39.05 | 226,105 | |||||
50 | 35.5 | 779,772 | |||||
10:0 | 75 | 56.85 | 6,700 | 100.57 | −0.0659 | 0.978 | 40.46 |
70 | 53.06 | 15,662 | |||||
65 | 49.27 | 56,860 | |||||
60 | 45.48 | 105,850 | |||||
55 | 41.69 | 792,079 |
MWCNT: GNP | 0:0 (Neat Epoxy) | 0:10 | 1:9 | 3:7 | 5:5 | 7:3 | 9:1 | 10:0 |
---|---|---|---|---|---|---|---|---|
Fracture toughness 1 KIC | 0.289 ± 0.018 | 0.861 ± 0.021 (+9.2) | 0.904 ± 0.013 (+14.7) | 0.871 ± 0.012 (+1.4) | 0.843 ± 0.024 (+7.9) | 0.863 ± 0.023 (+9.5) | 0.862 ± 0.022 (+9.4) | 0.868 ± 0.022 (+10.1) |
Filler Ratio MWCNT:GNP | 0:0 (Neat Epoxy) | 0:10 | 1:9 | 3:7 | 5:5 | 7:3 | 9:1 | 10:0 |
---|---|---|---|---|---|---|---|---|
Coefficient, C | 0.0299 | 0.0543 | 0.0809 | 0.1079 | 0.0316 | 0.0399 | 0.0605 | 0.1325 |
Exponent, m | 3.432 | 4.732 | 5.956 | 5.450 | 4.789 | 4.202 | 4.691 | 6.189 |
Coef. of determination, R2 | 0.982 | 0.943 | 0.993 | 0.988 | 0.984 | 0.990 | 0.987 | 0.994 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jen, Y.-M.; Huang, J.-C.; Zheng, K.-Y. Synergistic Effect of Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets on the Monotonic and Fatigue Properties of Uncracked and Cracked Epoxy Composites. Polymers 2020, 12, 1895. https://doi.org/10.3390/polym12091895
Jen Y-M, Huang J-C, Zheng K-Y. Synergistic Effect of Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets on the Monotonic and Fatigue Properties of Uncracked and Cracked Epoxy Composites. Polymers. 2020; 12(9):1895. https://doi.org/10.3390/polym12091895
Chicago/Turabian StyleJen, Yi-Ming, Jui-Cheng Huang, and Kun-Yang Zheng. 2020. "Synergistic Effect of Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets on the Monotonic and Fatigue Properties of Uncracked and Cracked Epoxy Composites" Polymers 12, no. 9: 1895. https://doi.org/10.3390/polym12091895
APA StyleJen, Y.-M., Huang, J.-C., & Zheng, K.-Y. (2020). Synergistic Effect of Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets on the Monotonic and Fatigue Properties of Uncracked and Cracked Epoxy Composites. Polymers, 12(9), 1895. https://doi.org/10.3390/polym12091895