Kinematics of Photoisomerization Processes of PMMA-BDK-MR Polymer Composite Thin Films
Abstract
:1. Introduction
2. Theoretical Background
3. Experimental Details
4. Results and Discussion
4.1. Kinematics of Photoisomerization Processes
4.2. WRE Optical Data Storage Cycle
4.3. Fourier Transform Infrared Spectroscopy (FTIR)
4.4. Scanning Electron Microscope (SEM)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, B.; Wang, M.; He, Y.; Wang, X. Duplication of photoinduced azo polymer surface-relief gratings through a soft lithographic approach. Langmuir 2006, 22, 7405–7410. [Google Scholar] [CrossRef] [PubMed]
- Kawata, S.; Kawata, Y. Three-dimensional optical data storage using photochromic materials. Chem. Rev. 2000, 100, 1777–1788. [Google Scholar] [CrossRef] [PubMed]
- Natansohn, A.; Rochon, P. Photoinduced motions in azobenzene-based amorphous polymers: Possible photonic devices. Adv. Mater. 1999, 11, 1387–1391. [Google Scholar] [CrossRef]
- Yager, K.G.; Barrett, C.J. Photomechanical surface patterning in azo-polymer materials. Macromolecules 2006, 39, 9320–9326. [Google Scholar] [CrossRef]
- Czaplicki, R.; Krupka, O.; Essaidi, Z.; El-Ghayoury, A.; Kajzar, F.; Grote, J.; Sahraoui, B. Grating inscription in picosecond regime in thin films of functionalized DNA. Opt. Express 2007, 15, 15268–15273. [Google Scholar] [CrossRef]
- Schab-Balcerzak, E.; Flakus, H.; Jarczyk-Jedryka, A.; Konieczkowska, J.; Siwy, M.; Bijak, K.; Sobolewska, A.; Stumpe, J. Photochromic supramolecular azopolyimides based on hydrogen bonds. Opt. Mater. 2015, 47, 501–511. [Google Scholar] [CrossRef]
- Derkowska-Zielinska, B.; Skowronski, L.; Kozlowski, T.; Smokal, V.; Kysil, A.; Biitseva, A.; Krupka, O. Influence of peripheral substituents on the optical properties of heterocyclic azo dyes. Opt. Mater. 2015, 49, 325–329. [Google Scholar] [CrossRef]
- Stoilova, A.; Georgiev, A.; Nedelchev, L.; Nazarova, D.; Dimov, D. Structure-property relationship and photoinduced birefringence of the azo and azo-azomethine dyes thin films in pmma matrix. Opt. Mater. 2019, 87, 16–23. [Google Scholar] [CrossRef]
- Kozanecka-Szmigiel, A.; Switkowski, K.; Schab-Balcerzak, E.; Szmigiel, D. Photoinduced birefringence of azobenzene polymer at blue excitation wavelengths. Appl. Phys. B 2015, 119, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Merino, E.; Ribagorda, M. Control over molecular motion using the cis–trans photoisomerization of the azo group. Beilstein J. Org. Chem. 2012, 8, 1071–1090. [Google Scholar] [CrossRef] [Green Version]
- Yager, K.G.; Barrett, C.J. Azobenzene polymers for photonic applications. Smart Light Responsive Mater. 2009, 1, 1–46. [Google Scholar]
- Zollinger, H. Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Hunger, K. Industrial Dyes: Chemistry, Properties, Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Zollinger, H. Azo and Diazo Chemistry: Aliphatic and Aromatic Compounds; Interscience Publishers: New York, NY, USA, 1961. [Google Scholar]
- Ross, D.L.; Blanc, J. Photochromism by Cis–Trans Isomerization; Wiley-Interscience: New York, NY, USA, 1971. [Google Scholar]
- Matsumoto, M.; Miyazaki, D.; Tanaka, M.; Azumi, R.; Manda, E.; Kondo, Y.; Yoshino, N.; Tachibana, H. Reversible light-induced morphological change in langmuir− blodgett films. J. Am. Chem. Soc. 1998, 120, 1479–1484. [Google Scholar] [CrossRef]
- Rau, H. Photoisomerization of azobenzenes. Photochem. Photophys. 1990, 2, 119–141. [Google Scholar]
- Blinov, L.M.; Kawai, T.; Kozlovsky, M.V.; Kawata, Y.; Ichimura, K.; Seki, T.; Tripathy, S.; Li, L.; Oliveira, O., Jr.; Irie, M. Photoreactive Organic Thin Films; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Brown, E.V.; Granneman, G.R. Cis-trans isomerism in the pyridyl analogs of azobenzene. Kinetic and molecular orbital analysis. J. Am. Chem. Soc. 1975, 97, 621–627. [Google Scholar] [CrossRef]
- Shi, Y.; Steier, W.H.; Yu, L.; Chen, M.; Dalton, L.R. Large stable photoinduced refractive index change in a nonlinear optical polyester polymer with disperse red side groups. Appl. Phys. Lett. 1991, 58, 1131–1133. [Google Scholar] [CrossRef]
- Sekkat, Z.; Morichere, D.; Dumont, M.; Loucif-Saïbi, R.; Delaire, J. Photoisomerization of azobenzene derivatives in polymeric thin films. J. Appl. Phys. 1992, 71, 1543–1545. [Google Scholar] [CrossRef]
- Morgenstern, K. Isomerization reactions on single adsorbed molecules. Acc. Chem. Res. 2009, 42, 213–223. [Google Scholar] [CrossRef]
- Henzl, J.; Mehlhorn, M.; Gawronski, H.; Rieder, K.H.; Morgenstern, K. Reversible cis–trans isomerization of a single azobenzene molecule. Angew. Chem. Int. Ed. 2006, 45, 603–606. [Google Scholar] [CrossRef]
- Choi, B.-Y.; Kahng, S.-J.; Kim, S.; Kim, H.; Kim, H.W.; Song, Y.J.; Ihm, J.; Kuk, Y. Conformational molecular switch of the azobenzene molecule: A scanning tunneling microscopy study. Phys. Rev. Lett. 2006, 96, 156106. [Google Scholar] [CrossRef] [Green Version]
- Derkowska-Zielinska, B.; Skowronski, L.; Biitseva, A.; Grabowski, A.; Naparty, M.; Smokal, V.; Kysil, A.; Krupka, O. Optical characterization of heterocyclic azo dyes containing polymers thin films. Appl. Surf. Sci. 2017, 421, 361–366. [Google Scholar] [CrossRef]
- Combellas, C.; Kajzar, F.; Mathey, G.; Petit, M.A.; Thiébault, A. Zwitterionic polymers for nonlinear optics. Chem. Phys. 2000, 252, 165–177. [Google Scholar] [CrossRef]
- Large, M.; Kajzar, F.; Raimond, P. Modulation of second harmonic generation in photochromic materials by the application of electric fields and low intensity light. Appl. Phys. Lett. 1998, 73, 3635–3637. [Google Scholar] [CrossRef]
- Lee, G.J.; Kim, D.; Lee, M. Photophysical properties and photoisomerization processes of methyl red embedded in rigid polymer. Appl. Opt. 1995, 34, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Koshima, H.; Ojima, N.; Uchimoto, H. Mechanical motion of azobenzene crystals upon photoirradiation. J. Am. Chem. Soc. 2009, 131, 6890–6891. [Google Scholar] [CrossRef]
- Roseanne, J.; Repines, S.; Szarka, A.; Hochstrasser, R. Femtosecond laser studies of cw-stilbene photoisomerization reaction. J. Chem. Phys. 1993, 98, 6291. [Google Scholar]
- Nägele, T.; Hoche, R.; Zinth, W.; Wachtveitl, J. Femtosecond photoisomerization of cis-azobenzene. Chem. Phys. Lett. 1997, 272, 489–495. [Google Scholar] [CrossRef]
- Bandara, H.D.; Burdette, S.C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825. [Google Scholar] [CrossRef]
- Coelho, P.J.; Sousa, C.M.; Castro, M.C.R.; Fonseca, A.M.C.; Raposo, M.M.M. Fast thermal cis–trans isomerization of heterocyclic azo dyes in pmma polymers. Opt. Mater. 2013, 35, 1167–1172. [Google Scholar] [CrossRef] [Green Version]
- Feringa, B.L.; Jager, W.F.; de Lange, B. Organic materials for reversible optical data storage. Tetrahedron 1993, 49, 8267–8310. [Google Scholar] [CrossRef]
- Bortolus, P.; Monti, S. Cis-trans photoisomerization of azobenzene. Solvent and triplet donors effects. J. Phys. Chem. 1979, 83, 648–652. [Google Scholar] [CrossRef]
- Rodier, J.M.; Myers, A.B. Cis-stilbene photochemistry: Solvent dependence of the initial dynamics and quantum yields. J. Am. Chem. Soc. 1993, 115, 10791–10795. [Google Scholar] [CrossRef]
- Ahmad, A.; Omari, A. The UV and laser aging for pmma/bdk/azo-dye polymer blend cured by UV light beams. IOP Conf. Ser. Mater. Sci. Eng. 2015, 72, 012024. [Google Scholar] [CrossRef]
- Blasco, E.; Piñol, M.; Berges, C.; Sánchez-Somolinos, C.; Oriol, L. Smart polymers for optical data storage. In Smart Polymers and Their Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 567–606. [Google Scholar]
- Al Attar, H.A.; Taqatqa, O. A new highly photorefractive polymer composite for optical data storage application. J. Opt. A Pure Appl. Opt. 2003, 5, S487. [Google Scholar] [CrossRef]
- Alsaad, A.; Al-Bataineh, Q.; Ahmad, A.; Bani-Salameh, A.; Albataineh, Z.; Telfah, A. Synthesis, crystallography, microstructure, crystal defects and optical properties of (fe-ni) co-doped zno thin films prepared by sol–gel technique. Bull. Am. Phys. Soc. 2020, 20. [Google Scholar] [CrossRef]
- Al-Abdallat, Y.; Jum’h, I.; Al Bsoul, A.; Jumah, R.; Telfah, A. Photocatalytic degradation dynamics of methyl orange using coprecipitation synthesized fe 3 o 4 nanoparticles. Water Air Soil Pollut. 2019, 230, 277. [Google Scholar] [CrossRef]
- Reeves, R.; Kaiser, R. Kinetic and spectral evidence for selective solvation of a hydrophobic quinoneimine dye in mixed aqueous solvents. In Water Structure at the Water-Polymer Interface; Springer: Berlin, Germany, 1972; pp. 56–69. [Google Scholar]
- Reichardt, C. Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 1994, 94, 2319–2358. [Google Scholar] [CrossRef]
- Özen, A.S.; Doruker, P.; Aviyente, V. Effect of cooperative hydrogen bonding in azo− hydrazone tautomerism of azo dyes. J. Phys. Chem. A 2007, 111, 13506–13514. [Google Scholar] [CrossRef]
- Ruzza, P.; Hussain, R.; Biondi, B.; Calderan, A.; Tessari, I.; Bubacco, L.; Siligardi, G. Effects of trehalose on thermodynamic properties of alpha-synuclein revealed through synchrotron radiation circular dichroism. Biomolecules 2015, 5, 724–734. [Google Scholar] [CrossRef] [Green Version]
- Ababneh, R.; Telfah, A.; Jum’h, I.; Abudayah, M.; Al-Abdallat, Y.; Lambert, J.; Hergenröder, R. 1h nmr spectroscopy to investigate the kinetics and the mechanism of proton charge carriers ionization and transportation in hydrophilic/hydrophobic media: Methyl sulfonic acid as a protonic ion source in water/alcohol binary mixtures. J. Mol. Liq. 2018, 265, 621–628. [Google Scholar] [CrossRef]
- Jensen, M.Ø.; Mouritsen, O.G.; Peters, G.H. The hydrophobic effect: Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces. J. Chem. Phys. 2004, 120, 9729–9744. [Google Scholar] [CrossRef]
- Ahmad, A.; Alsaad, A.; Al-Bataineh, Q.M.; Al-Akhras, M.-A.H.; Albataineh, Z.; Alizzy, K.A.; Daoud, N.S. Synthesis and characterization of zno nps-doped pmma-bdk-mr polymer-coated thin films with uv curing for optical data storage applications. Polym. Bull. 2020, 1–23. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Bataineh, Q.M.; Ahmad, A.A.; Alsaad, A.M.; Qattan, I.A.; Bani-Salameh, A.A.; Telfah, A.D. Kinematics of Photoisomerization Processes of PMMA-BDK-MR Polymer Composite Thin Films. Polymers 2020, 12, 1275. https://doi.org/10.3390/polym12061275
Al-Bataineh QM, Ahmad AA, Alsaad AM, Qattan IA, Bani-Salameh AA, Telfah AD. Kinematics of Photoisomerization Processes of PMMA-BDK-MR Polymer Composite Thin Films. Polymers. 2020; 12(6):1275. https://doi.org/10.3390/polym12061275
Chicago/Turabian StyleAl-Bataineh, Qais M., A. A. Ahmad, A. M. Alsaad, I. A. Qattan, Areen A. Bani-Salameh, and Ahmad D. Telfah. 2020. "Kinematics of Photoisomerization Processes of PMMA-BDK-MR Polymer Composite Thin Films" Polymers 12, no. 6: 1275. https://doi.org/10.3390/polym12061275
APA StyleAl-Bataineh, Q. M., Ahmad, A. A., Alsaad, A. M., Qattan, I. A., Bani-Salameh, A. A., & Telfah, A. D. (2020). Kinematics of Photoisomerization Processes of PMMA-BDK-MR Polymer Composite Thin Films. Polymers, 12(6), 1275. https://doi.org/10.3390/polym12061275