Next Article in Journal
Optimization and Quality Evaluation of the Interlayer Bonding Performance of Additively Manufactured Polymer Structures
Previous Article in Journal
Effects of Graphene Nanosheets with Different Lateral Sizes as Conductive Additives on the Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials for Li Ion Batteries
Previous Article in Special Issue
Coagulation of Chitin Production Wastewater from Shrimp Scraps with By-Product Chitosan and Chemical Coagulants
Open AccessArticle

Bioprocessing of Squid Pens Waste into Chitosanase by Paenibacillus sp. TKU047 and Its Application in Low-Molecular Weight Chitosan Oligosaccharides Production

1
Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
2
Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
3
Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
4
Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
5
Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
*
Author to whom correspondence should be addressed.
Polymers 2020, 12(5), 1163; https://doi.org/10.3390/polym12051163
Received: 21 April 2020 / Revised: 16 May 2020 / Accepted: 17 May 2020 / Published: 19 May 2020
(This article belongs to the Special Issue Chitin and Chitosan: Properties and Applications II)
Chitosan oligosaccharide (COS) has become of great interest in recent years because of its worthy biological activities. This study aims to produce COS using the enzymatic method, and investigates Paenibacillus sp. TKU047, a chitinolytic-producing strain, in terms of its chitosanase productivity on several chitinous material-containing mediums from fishery process wastes. The highest amount of chitosanase was produced on the medium using 2% (w/v) squid pens powder (0.60 U/mL) as the single carbon and nitrogen (C/N) source. The molecular mass of TKU047 chitosanase, which could be the smallest one among chitinases/chitosanases from the Paenibacillus genus, was approximately 23 kDa according to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) method. TKU047 chitosanase possessed the highest activity at 60 °C, pH 7, and toward chitosan solution with a higher degree of deacetylation (DDA) value. Additionally, the hydrolysis products of 98% DDA chitosan catalyzed by TKU047 chitosanase showed the degree of polymerization (DP) ranging from 2 to 9, suggesting that it was an endo-type activity chitosanase. The free radical scavenging activity of the obtained chitosan oligosaccharide (COS) was determined. The result showed that COS produced with Paenibacillus sp. TKU047 chitosanase expressed a higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity than that from the commercial COSs with maximum activity and IC50 values of 81.20% and 1.02 mg/mL; 18.63% and 15.37 mg/mL; and 15.96% and 15.16 mg/mL, respectively. As such, Paenibacillus sp. TKU047 may have potential use in converting squid pens waste to produce chitosanase as an enzyme for bio-activity COS preparation. View Full-Text
Keywords: chitosan; chitosanase; chitosan oligosaccharides; Paenibacillus; free radical scavenging activity chitosan; chitosanase; chitosan oligosaccharides; Paenibacillus; free radical scavenging activity
Show Figures

Figure 1

MDPI and ACS Style

Doan, C.T.; Tran, T.N.; Nguyen, V.B.; Tran, T.D.; Nguyen, A.D.; Wang, S.-L. Bioprocessing of Squid Pens Waste into Chitosanase by Paenibacillus sp. TKU047 and Its Application in Low-Molecular Weight Chitosan Oligosaccharides Production. Polymers 2020, 12, 1163.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop