Silsesquioxane Derivatives as Functional Additives for Preparation of Polyethylene-Based Composites: A Case of Trisilanol Melt-Condensation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Instrumentation
2.2. General Procedure for Composites Preparation and Characterization
3. Results and Discussion
3.1. Characterisation of the Obtained Modifiers
3.2. SEM-EDS Analysis
3.3. Mechanical Analysis
3.4. Thermomechanical Analysis
3.5. Thermal Analysis
3.6. Rheological Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chanda, M.; Roy, S.K. Industrial Polymers, Specialty Polymers, and Their Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Brinson, H.F.; Brinson, L.C. Polymer Engineering Science and Viscoelasticity Polymer Engineering Science and Viscoelasticity an Introduction; Springer: Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Barnes, M.D.; Fukui, K.; Kaji, K.; Kanaya, T.; Noid, D.W.; Otaigbe, J.U.; Pokrovskii, V.N.; Sumpter, B.G. Polymer Physics and Engineering; Springer: Heidelberg, Germany, 2001. [Google Scholar]
- Manju, V.K.T. Hybrid. Polymer Composite Materials; Woodhead Publishing: Cambridge, UK, 2017. [Google Scholar]
- Jois, Y.H.R.; Harrison, J.B. Modification of Polyolefins: An Overview. J. Macromol. Sci. Part C Polym. Rev. 1996, 36, 433–455. [Google Scholar] [CrossRef]
- Fink, J.K. Handbook of Engineering and Specialty Thermoplastics, Volume 1: Polyolefins and Styrenics, 1st ed.; Wiley-Scrivener: Salem, MA, USA, 2010. [Google Scholar]
- Patwary, F.; Mittal, V. Degradable Polyethylene Nanocomposites with Silica, Silicate and Thermally Reduced Graphene Using Oxo-Degradable pro-Oxidant. Heliyon 2015, 1. [Google Scholar] [CrossRef]
- Yang, X.; Shan, Y.; Wei, X.; Zhong, S.; Huang, Y.; Yu, H.; Yang, J. Polyethylene/Silica Nanorod Composites with Reduced Dielectric Constant and Enhanced Mechanical Strength. J. Appl. Polym. Sci. 2019, 136, 24–28. [Google Scholar] [CrossRef]
- Kaczmarek, H.; Chylińska, M.; Królikowski, B.; Klimiec, E.; Bajer, D.; Kowalonek, J. Influence of Glass Beads Filler and Orientation Process on Piezoelectric Properties of Polyethylene Composites. J. Mater. Sci. Mater. Electron. 2019, 30, 21032–21047. [Google Scholar] [CrossRef]
- Cheremisinoff, P. Handbook of Engineering Polymeric Materials; Marcel Dekker: New York, NY, USA, 1997. [Google Scholar]
- Kausar, A. State-of-the-Art Overview on Polymer/POSS Nanocomposite. Polym. Plast. Technol. Eng. 2017, 56, 1401–1420. [Google Scholar] [CrossRef]
- Du, Y.; Liu, H. Cage-like Silsesquioxanes-Based Hybrid Materials. Dalt. Trans. 2020, 49, 5396–5405. [Google Scholar] [CrossRef] [PubMed]
- Kuo, S.W.; Chang, F.C. POSS Related Polymer Nanocomposites. Prog. Polym. Sci. 2011, 36, 1649–1696. [Google Scholar] [CrossRef]
- Ayandele, E.; Sarkar, B.; Alexandridis, P. Polyhedral Oligomeric Silsesquioxane (POSS)-Containing Polymer Nanocomposites. Nanomaterials 2012, 2, 445–475. [Google Scholar] [CrossRef]
- Zhou, H.; Ye, Q.; Xu, J. Polyhedral Oligomeric Silsesquioxane-Based Hybrid Materials and Their Applications. Mater. Chem. Front. 2017, 1, 212–230. [Google Scholar] [CrossRef]
- Shi, H.; Yang, J.; You, M.; Li, Z.; He, C. Polyhedral Oligomeric Silsesquioxanes (POSS)-Based Hybrid Soft Gels: Molecular Design, Material Advantages, and Emerging Applications. ACS Mater. Lett. 2020, 2, 296–316. [Google Scholar] [CrossRef]
- Li, Z.; Kong, J.; Wang, F.K.; He, C. Polyhedral Oligomeric Silsesquioxanes (POSSs): An Important Building Block for Organic Optoelectronic Materials. J. Mater. Chem. C 2017, 5, 5283–5298. [Google Scholar] [CrossRef]
- Hartmann-Thompson, C. Applications of Polyhedral Oligomeric Silsesquioxanes; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Cordes, D.B.; Lickiss, P.D.; Rataboul, F. Recent Developments in the Chemistry of Cubic Polyhedral.Pdf. Chem. Rev. 2010, 110, 2081–2173. [Google Scholar] [CrossRef] [PubMed]
- Nicoleta, A.; Xavier, F.; Radovici, C.; Mihaela, D. Influence of Branched or Un-Branched Alkyl Substitutes of POSS on Morphology, Thermal and Mechanical Properties of Polyethylene. Compos. Part B 2013, 50, 98–106. [Google Scholar] [CrossRef]
- Xavier, F.; Mihaela, D.; Nicoleta, A.; Radovici, C.; Nicolae, C. The Influence of Alkyl Substituents of POSS in Polyethylene Nanocomposites. Polymer 2013, 54, 2347–2354. [Google Scholar] [CrossRef]
- Joshi, M.; Butola, B.S. Studies on Nonisothermal Crystallization of HDPE/POSS Nanocomposites. Polymer 2004, 45, 4953–4968. [Google Scholar] [CrossRef]
- Joshi, M.; Butola, B.S.; Simon, G.; Kukaleva, N. Rheological and Viscoelastic Behavior of HDPE/Octamethyl-POSS. Macromolecules 2006, 39, 1839–1849. [Google Scholar] [CrossRef]
- Li, W.; Chen, T.; Guan, C.; Gong, D.; Mu, J.; Chen, Z.; Zhou, Q. Influence of Polyhedral Oligomeric Silsesquioxane Structure on the Disentangled State of Ultrahigh Molecular Weight Polyethylene Nanocomposites during Ethylene in Situ Polymerization. Ind. Eng. Chem. Res. 2015, 54, 1478–1486. [Google Scholar] [CrossRef]
- Lim, S.; Hong, E.; Choi, H.J.; Chin, I. Polyhedral Oligomeric Silsesquioxane and Polyethylene Nanocomposites and Their Physical Characteristics. J. Ind. Eng. Chem. 2010, 16, 189–192. [Google Scholar] [CrossRef]
- Lim, S.; Lee, J.Y.; Choi, H.J.; Chin, I. On Interaction Characteristics of Polyhedral Oligomeric Silsesquioxane Containing Polymer. Polym. Bull. 2015, 72, 2331–2352. [Google Scholar] [CrossRef]
- Guo, M.; Frechette, M.; David, É.; Demarquette, N.R.; Daigle, J. Polyethylene/Polyhedral Oligomeric Silsesquioxanes Composites: Electrical Insulation for High Voltage Power Cables. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 798–807. [Google Scholar] [CrossRef]
- Xu, Z.; Guo, M.; Fréchette, M.; David, É.; Chen, G. Space Charge Properties of LDPE-Based Composites with Three Types of POSS. In Proceedings of the 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 17–20 October 2016; pp. 679–682. [Google Scholar]
- Scapini, P.; Figueroa, C.A.; Amorim, C.L.G.; Machado, G.; Mauler, R.S.; Crespo, J.S.; Oliviera, R.V. Thermal and Morphological Properties of High-Density Polyethylene/Ethylene—Vinyl Acetate Copolymer Composites with Polyhedral Oligomeric Silsesquioxane Nanostructure. Polym. Int. 2010, 59, 175–180. [Google Scholar] [CrossRef]
- Fréchette, M.F.; Ghafarizadeh, S.B.; Ahn, T.T.; Vadeboncoeur, S.; Guo, M.; David, E. LDPE Nanocomposites Containing Functionalized SiO2 Molecular Structures: Properties Associated with a Ball-Milled Preparation. In Proceedings of the 1st International Conference on Electrical Materials and Power Equipment, Xi’an, China, 14–17 May 2017; pp. 221–224. [Google Scholar] [CrossRef]
- Fréchette, M.F.; Guo, M.; Savoie, S.; Vanga-Bouanga, C.; David, E. POSS Dispersion in Polyethylene Microcomposites Containing Quartz and Dielectric Responses. In Proceedings of the Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, CEIDP, Shenzhen, China, 20–23 October 2013; pp. 742–745. [Google Scholar] [CrossRef]
- Niemczyk, A.; Dziubek, K. Study of Thermal Properties of Polyethylene and Polypropylene Nanocomposites with Long Alkyl Chain-Substituted POSS Fillers. J. Therm. Anal. Calorim. 2016, 125, 1287–1299. [Google Scholar] [CrossRef]
- Guo, M.; Frechette, M.F.; David, E.; Couderc, H.; Savoie, S.; Vanga Bouanga, C.; Demarquette, N.R. Characterization of UHMWPE/POSS Composite Prepared by Ball Milling. In Proceedings of the 2013 IEEE Electrical Insulation Conference, EIC 2013, Ottawa, ON, Canada, 2–5 June 2013; pp. 444–448. [Google Scholar] [CrossRef]
- Guo, M.; Fréchette, M.; David, É.; Demarquette, N.R. Influence of Fabrication Techniques on the Dielectric Properties of PE/POSS Polymeric Composites. In Proceedings of the 2016 Electrical Insulation Conference (EIC), Montreal, QC, Canada, 19–22 June 2016; pp. 297–300. [Google Scholar]
- Guo, M.; Fréchette, M.; David, É.; Demarquette, N.R.; Daigle, J. Polyethylene-Based Nanodielectrics Containing Octaisobutyl Polyhedral Oligomeric SilSesquioxanes Obtained by Solution Blending in Xylene. In Proceedings of the 2014 Annual Report Conference on Electrical Insulation and Dielectric Phenomena Polyethylene-Based, Des Moines, IA, USA, 19–22 October 2014; pp. 731–734. [Google Scholar]
- Guo, M.; Frechette, M.; Demarquette, N.R.; David, E. Polyethylene-Based Nanodielectric Containing Octaisobutyl Polyhedral Oligomeric SilSesquioxanes Obtained by Hexane Slurry Blending. In Proceedings of the 2014 International Symposium on Electrical Insulating Materials, Niigata, Japan, 1–5 June 2014; pp. 61–64. [Google Scholar]
- Guo, M.; Fréchette, M.F.; David, E.; Couderc, H.; Demarquette, N.R. Effects of Stearic Acid and Thermal Treatment on Morphology and Dielectric Properties of UHMWPE/POSS Composites Prepared by Ball Milling. In Proceedings of the 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena Effects, Shenzhen, China, 20–23 October 2013; pp. 760–763. [Google Scholar]
- Safarikova, B.; Kalendova, A.; Habrova, V.; Zatloukalova, S.; Machovsky, M. Synergistic Effect between Polyhedral Oligomeric Silsesquioxane and Flame Retardants. AIP Conf. Proc. 2014, 1599, 106–109. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, G.; Guo, M.; David, É.; Fréchette, M. Space Charge Properties of UHMWPE/OibPOSS Composites. In Proceedings of the 2015 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Ann Arbor, MI, USA, 18–21 October 2015; pp. 543–546. [Google Scholar]
- Heeley, E.L.; Hughes, D.J.; El, Y.; Taylor, P.G.; Bassindale, A.R. Morphology and Crystallization Kinetics of Polyethylene/Long Alkyl-Chain Substituted Polyhedral Oligomeric Silsesquioxanes (POSS) Nanocomposite Blends: A SAXS/WAXS Study. Eur. Polym. J. 2014, 51, 45–56. [Google Scholar] [CrossRef][Green Version]
- Barczewski, M.; Czarnecka-Komorowska, D.; Andrzejewski, J.; Sterzyński, T.; Dutkiewicz, M.; Dudziec, B. Właściwości Przetwórcze Termoplastycznych Tworzyw Polimerowych Modyfikowanych Silseskwioksanami (POSS). Polim. Polym. 2013, 58, 805–815. [Google Scholar] [CrossRef]
- Heeley, E.L.; Hughes, D.J.; Taylor, P.G.; Bassindale, A.R. Crystallization and Morphology Development in Polyethylene-Octakis(n-Octadecyldimethylsiloxy)-Octasilsesquioxane Nanocomposite Blends. RSC Adv. 2015, 5, 34709–34719. [Google Scholar] [CrossRef]
- Fréchette, M.; Guo, M.; David, É.; Min, D.; Li, S. The Dielectric Response of Polyethylene/Polyhedral Oligomeric Silsesquioxanes Composites at Various Temperatures. In Proceedings of the 2017 IEEE Conference on Electrical Insulation and Dielectric Phenomenon (CEIDP), Fort Worth, TX, USA, 22–25 October 2017; pp. 501–504. [Google Scholar]
- Guo, M.; David, É.; Fréchette, M.; Demarquette, N.R. Polyethylene/Polyhedral Oligomeric Silsesquioxanes Composites: Dielectric, Thermal and Rheological Properties. Polymer 2017, 115, 60–69. [Google Scholar] [CrossRef]
- Guo, M.; David, É.; Fréchette, M.; Demarquette, N.R. Low-Density Polyethylene/Polyhedral Oligomeric Silsesquioxanes Composites Obtained by Extrusion. In Proceedings of the 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Eaton Chelsea Hotel, Toronto, ON, Canada, 16–19 October 2016; pp. 647–650. [Google Scholar]
- Hato, M.J.; Ray, S.S.; Luyt, A.S. Nanocomposites Based on Polyethylene and Polyhedral Oligomeric Silsesquioxanes, 1 – Microstructure, Thermal and Thermomechanical Properties. Mol. Mater. Eng. 2008, 293, 752–762. [Google Scholar] [CrossRef]
- Hato, M.J.; Ray, S.S.; Africa, S.; Luyt, A.S. Melt-State Viscoelastic Properties of POSS-Containing Polyethylene Melt-State Viscoelastic Properties of POSS-Containing Polyethylene Nanocomposites. Adv. Sci. Lett. 2011, 4, 3585–3589. [Google Scholar] [CrossRef]
- Nguyen, T.-A.; Mannle, F.; Gregersen, Ø.W. Polyethylene/Octa-(Ethyl Octadeca-10,13 Dienoamide) Silsesquioxane Blends and the Adhesion Strength Po Paperboard. Int. J. Adhes. Adhes. 2012, 38, 117–124. [Google Scholar] [CrossRef]
- Nguyen, T.; Gregersen, Ø.W.; Männle, F. Thermal Oxidation of Polyolefins by Mild Pro-Oxidant Additives Based on Iron Carboxylates and Lipophilic Amines: Degradability in the Absence of Light and Effect on the Adhesion to Paperboard. Polymers 2015, 7, 1522–1540. [Google Scholar] [CrossRef]
- Grala, M.; Bartczak, Z.; Gadzinowska, K. Polyolefins—Polyhedral Oligomeric Silsesquioxanes (Poss) Nanocomposites: Mechanical Properties, Morphology and Thermal Behaviour. In Proceedings of the ECCM15—15th European Conference on Composite Materials, Venice, Italy, 24–28 June 2012; pp. 1–2. [Google Scholar]
- Grala, M.; Bartczak, Z. Morphology and Mechanical Properties of High Density Polyethylene-POSS Hybrid Nanocomposites Obtained by Reactive Blending. Polym. Eng. Sci. 2014, 55, 2058–2072. [Google Scholar] [CrossRef]
- Morici, E.; Di Bartolo, A.; Arrigo, R.; Tzankova Dintcheva, N. POSS Grafting on Polyethylene and Maleic Anhydride-Grafted Polyethylene by One-Step Reactive Melt Mixing. Adv. Polym. Technol. 2016, 21673, 1–9. [Google Scholar] [CrossRef]
- Panaitescu, D.M.; Frone, A.N.; Radovici, C.; Nicolae, C.; Perrin, F.X. Influence of Octyl Substituted Octakis(Dimethylsiloxy)Octasilsesquioxane on the Morphology and Thermal and Mechanical Properties of Low Density Polyethylene. Polym. Int. 2014, 63, 228–236. [Google Scholar] [CrossRef]
- Brząkalski, D.; Przekop, R.E.; Dobrosielska, M.; Sztorch, B.; Marciniak, P.; Marciniec, B. Highly Bulky Spherosilicates as Functional Additives for Polyethylene Processing—Influence on Mechanical and Thermal Properties. Polym. Compos. 2020, 1–14. [Google Scholar] [CrossRef]
- Cicala, G.; Blanco, I.; Latteri, A.; Ognibene, G.; Bottino, F.A.; Elena, M. PES/POS Soluble Veils as Advanced Modifiers for Multifunctional Fiber Reinforced Composites. Polymers 2017, 9, 281. [Google Scholar] [CrossRef]
- Vieira, E.G.; Dal-Bó, A.G.; Frizon, T.E.A.; Dias Filho, N.L. Synthesis of Two New Mo(II) Organometallic Catalysts Immobilized on POSS for Application in Olefin Oxidation Reactions. J. Organomet. Chem. 2017, 834, 73–82. [Google Scholar] [CrossRef]
- Ye, M.; Wu, Y.; Zhang, W.; Yang, R. Synthesis of Incompletely Caged Silsesquioxane (T7-POSS) Compounds via a Versatile Three-Step Approach. Res. Chem. Intermed. 2018, 44, 4277–4294. [Google Scholar] [CrossRef]
- Ervithayasuporn, V.; Wang, X.; Kawakami, Y. Synthesis and Characterization of Highly Pure Azido-Functionalized Polyhedral Oligomeric Silsesquioxanes (POSS). Chem. Commun. 2009, 60, 5130–5132. [Google Scholar] [CrossRef]
- Lee, H.; Hong, S.H. Polyhedral Oligomeric Silsesquioxane-Conjugated Bis(Diphenylphosphino)Amine Ligand for Chromium(III) Catalyzed Ethylene Trimerization and Tetramerization. Appl. Catal. A Gen. 2018, 560, 21–27. [Google Scholar] [CrossRef]
- Mirabella, F.M.; Bafna, A. Determination of the Crystallinity of Polyethylene/α-Olefin Copolymers by Thermal Analysis: Relationship of the Heat of Fusion of 100% Polyethylene Crystal and the Density. J. Polym. Sci. Part B Polym. Phys. 2002, 40, 1637–1643. [Google Scholar] [CrossRef]
- Zeng, J.; Bennett, C.; Jarrett, W.L.; Kumar, S.; Mathias, L.J.; Schiraldi, D.A. Structural Changes in Trisilanol POSS during Nanocomposite Melt Processing Nanocomposite Melt Processing. Compos. Interfaces 2005, 11, 673–685. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, W.; Cheng, S.Z.; Wesdemiotis, C. Analysis of Monodisperse, Sequence-Defined, and POSS-Functionalized Polyester Copolymers by MALDI Tandem Mass Spectrometry. Eur. J. Mass Spectrom. Chichester Eng. 2019, 25, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q.; Xu, J.; Zhang, M.; He, J.; Ni, P. Versatile Construction of Single-Tailed Giant Surfactants with Hydrophobic Poly(ε-Caprolactone) Tail and Hydrophilic POSS Head. Polymers 2019, 11, 311. [Google Scholar] [CrossRef] [PubMed]
- Karuppasamy, K.; Prasanna, K.; Vikraman, D.; Kim, H.S.; Kathalingam, A.; Mitu, L.; Rhee, H.W. A Rapid One-Pot Synthesis of Novel High-Purity Methacrylic Phosphonic Acid (PA)-Based Polyhedral Oligomeric Silsesquioxane (POSS) Frameworks via Thiol-Ene Click Reaction. Polymers 2017, 9, 192. [Google Scholar] [CrossRef]
- Sheen, Y.C.; Lu, C.H.; Huang, C.F.; Kuo, S.W.; Chang, F.C. Synthesis and Characterization of Amorphous Octakis-Functionalized Polyhedral Oligomeric Silsesquioxanes for Polymer Nanocomposites. Polymer 2008, 49, 4017–4024. [Google Scholar] [CrossRef]
- Xavier Perrin, F.; Viet Nguyen, T.B.; Margaillan, A. Linear and Branched Alkyl Substituted Octakis(Dimethylsiloxy) Octasilsesquioxanes: WAXS and Thermal Properties. Eur. Polym. J. 2011, 47, 1370–1382. [Google Scholar] [CrossRef]
- Camino, G.; Lomakin, S.M.; Lageard, M. Thermal Polydimethylsiloxane Degradation. Part 2. The Degradation Mechanisms. Polymer 2002, 43, 2011–2015. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, W.; Yao, R.; Jiang, B. Thermal Stability Enhancement Mechanism of Poly(Dimethylsiloxane) Composite by Incorporating Octavinyl Polyhedral Oligomeric Silsesquioxanes. Polym. Degrad. Stab. 2013, 98, 109–114. [Google Scholar] [CrossRef]
- Chatgilialoglu, C. Structural and Chemical Properties of Silyl Radicals. Chem. Rev. 1995, 95, 1229–1251. [Google Scholar] [CrossRef]
- Salamone, J.C. Concise Polymeric Materials Encyclopedia, 1st ed.; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Bouza, R.; Barral, L.; Díez, F.J.; López, J.; Montero, B.; Rico, M.; Ramírez, C. Study of Thermal and Morphological Properties of a Hybrid System, IPP/POSS. Effect of Flame Retardance. Compos. Part B Eng. 2014, 58, 566–572. [Google Scholar] [CrossRef]
Additive | Sample | Concentration of Additive (%) | |||
---|---|---|---|---|---|
0.1 | 0.5 | 1.0 | 1.5 | ||
Tensile Strength (MPa) | |||||
Neat PE | Dumbbell | 13.08 ± 0.26 | |||
Foil | 19.70 ± 0.95 | ||||
SSQ-8Cl | Dumbbell | 13.11 ± 0.33 | 13.29 ± 0.19 | 13.22 ± 0.34 | - |
Foil | 16.79 ± 0.77 | 15.99 ± 0.88 | 15.87 ± 0.81 | - | |
iBu7SSQ-Cl | Dumbbell | 13.41 ± 0.12 | 13.29 ± 0.21 | 13.14 ± 0.27 | - |
Foil | 14.44 ± 0.69 | 16.44 ± 0.43 | 15.45 ± 0.71 | - | |
iBu7SSQ-NH2 | Dumbbell | 14.43 ± 0.22 | 14.20 ± 0.49 | 14.06 ± 0.19 | - |
Foil | 18.17 ± 0.39 | 16.42 ± 0.90 | 16.62 ± 0.77 | - | |
iBu7SSQ-Vi | Dumbbell | - | 13.00 ± 0.34 | 12.98 ± 0.32 | 12.52 ± 0.48 |
Foil | - | 16.31 ± 0.94 | 14.49 ± 0.86 | 14.91 ± 0.80 | |
iBu7SSQ-3OH | Dumbbell | - | 14.41 ± 0.24 | 14.36 ± 0.18 | 14.33 ± 0.32 |
Foil | - | 15.83 ± 0.68 | 20.81 ± 0.80 | 19.12 ± 0.70 |
Additive | Sample | Concentration of Additive (%) | |||
---|---|---|---|---|---|
0.1 | 0.5 | 1.0 | 1.5 | ||
Young’s Modulus (MPa) | |||||
Neat PE | Dumbbell | 91.68 ± 3.46 | |||
Foil | 213.82 ± 14.59 | ||||
SSQ-8Cl | Dumbbell | 92.92 ± 5.31 | 95.93 ± 4.71 | 97.71 ± 5.39 | - |
Foil | 166.08 ± 8.70 | 155.35 ± 6.13 | 164.17 ± 9.64 | - | |
iBu7SSQ-Cl | Dumbbell | 94.34 ± 3.08 | 95.86 ± 4.24 | 92.73 ± 2.01 | - |
Foil | 150.74 ± 8.08 | 168.26 ± 8.74 | 141.10 ± 7.47 | - | |
iBu7SSQ-NH2 | Dumbbell | 108.92 ± 2.70 | 101.80 ± 4.87 | 103.75 ± 4.77 | - |
Foil | 209.89 ± 11.23 | 159.42 ± 6.48 | 166.67 ± 8.39 | - | |
iBu7SSQ-Vi | Dumbbell | - | 92.53 ± 4.84 | 92.08 ± 3.55 | 98.63 ± 4.46 |
Foil | - | 151.69 ± 9.03 | 166.20 ± 9.40 | 150.88 ± 11.05 | |
iBu7SSQ-3OH | Dumbbell | - | 109.09 ± 2.08 | 109.72 ± 3.40 | 105.67 ± 2.82 |
Foil | - | 167.58 ± 7.14 | 194.06 ± 9.79 | 110.74 ± 6.35 |
Additive | Sample | Concentration of Additive (%) | |||
---|---|---|---|---|---|
0.1 | 0.5 | 1.0 | 1.5 | ||
Elongation at Maximum Load (%) | |||||
Neat PE | Dumbbell | 60.38 ± 1.77 | |||
Foil | 176.69 ± 11.63 | ||||
SSQ-8Cl | Dumbbell | 59.97 ± 2.84 | 59.25 ± 2.15 | 57.97 ± 3.41 | - |
Foil | 166.05 ± 7.83 | 142.70 ± 6.30 | 158.96 ± 9.29 | - | |
iBu7SSQ-Cl | Dumbbell | 60.29 ± 2.14 | 59.45 ± 2.06 | 59.86 ± 1.15 | - |
Foil | 121.55 ± 6.92 | 112.41 ± 5.33 | 101.40 ± 5.23 | - | |
iBu7SSQ-NH2 | Dumbbell | 57.69 ±1.18 | 59.28 ± 2.52 | 58.03 ± 2.02 | - |
Foil | 161.07 ± 6.13 | 159.16 ± 7.11 | 137.63 ± 5.77 | - | |
iBu7SSQ-Vi | Dumbbell | - | 59.05 ±2.02 | 59.28 ± 3.01 | 53.51 ± 1.32 |
Foil | - | 158.60 ± 8.02 | 141.78 ± 8.28 | 133.73 ± 9.06 | |
iBu7SSQ-3OH | Dumbbell | - | 57.13 ± 0.76 | 56.52 ± 1.28 | 57.88 ± 0.90 |
Foil | - | 113.53 ± 5.41 | 124.40 ± 6.13 | 76.24 ± 4.12 |
Measurements in Air Atmosphere | |||||||
Additive Conc. [%] | T (°C) | Additive Type | |||||
Neat PE | SSQ-8Cl | iBu7SSQ-Cl | iBu7SSQ-NH2 | iBu7SSQ-Vi | iBu7SSQ-3OH | ||
0.1 | T5% | 348.3 | 355.4 | 355.6 | 362 | - | - |
Tonset | 382.4 | 379.4 | 380.2 | 400.3 | - | - | |
TDTG | 418.3 | 422.6 | 419.8 | 448.5 | - | - | |
0.5 | T5% | 348.3 | 373.3 | 362.3 | 365.5 | 366.6 | 364.7 |
Tonset | 382.4 | 399.4 | 391.7 | 434.7 | 398.5 | 396.9 | |
TDTG | 418.3 | 455.8 | 440.8 | 445.4 | 443.9 | 436.5 | |
1.0 | T5% | 348.3 | 362.5 | 354.4 | 381.4 | 359.9 | 369.0 |
Tonset | 382.4 | 392.1 | 394.3 | 448.4 | 389.7 | 404.6 | |
TDTG | 418.3 | 439.1 | 433.7 | 458.1 | 447.2 | 438.5 | |
1.5 | T5% | 348.3 | - | - | - | 364.7 | 372.8 |
Tonset | 382.4 | - | - | - | 402.5 | 404.7 | |
TDTG | 418.3 | - | - | - | 444.4 | 441.9 | |
Measurements in Nitrogen Atmosphere | |||||||
Additive Conc. [%] | T (°C) | Additive Type | |||||
Neat PE | SSQ-8Cl | iBu7SSQ-Cl | iBu7SSQ-NH2 | iBu7SSQ-Vi | iBu7SSQ-3OH | ||
0.1 | T5% | 441.8 | 447.4 | 446.5 | 444.9 | - | - |
Tonset | 469.3 | 479.8 | 473.8 | 470.6 | - | - | |
TDTG | 477.9 | 488.2 | 487.9 | 485.2 | - | - | |
0.5 | T5% | 441.8 | 444.7 | 449.1 | 448.7 | 445.2 | 445.7 |
Tonset | 469.3 | 472.8 | 462.9 | 473.2 | 476.2 | 470.5 | |
TDTG | 477.9 | 487.2 | 489 | 487.8 | 489.8 | 486.6 | |
1.0 | T5% | 441.8 | 443.7 | 445.5 | 445.3 | 445.3 | 445.1 |
Tonset | 469.3 | 476.2 | 472.4 | 460 | 472.0 | 471.1 | |
TDTG | 477.9 | 487.7 | 489.6 | 486.3 | 490.1 | 487.2 | |
1.5 | T5% | 441.8 | - | - | - | 445.1 | 443.7 |
Tonset | 469.3 | - | - | - | 476.0 | 474.4 | |
TDTG | 477.9 | - | - | - | 490.3 | 489.2 |
Additive | Concentration of Additive (%) | Concentration of Additive (%) | ||||||
---|---|---|---|---|---|---|---|---|
0.1 | 0.5 | 1.0 | 1.5 | 0.1 | 0.5 | 1.0 | 1.5 | |
Crystallisation Temperature (°C) | Melting Temperature (°C) | |||||||
Neat PE | 98.8 | 112.4 | ||||||
SSQ-8Cl | 99.0 | 99.5 | 99.8 | - | 113.4 | 112.2 | 111.8 | - |
iBu7SSQ-Cl | 99.3 | 99.1 | 99.7 | - | 112.3 | 112.5 | 111.8 | - |
iBu7SSQ-NH2 | 99.9 | 99.4 | 100.0 | - | 112.0 | 111.8 | 111.5 | - |
iBu7SSQ-Vi | - | 99.5 | 99.0 | 98.4 | - | 112.6 | 113.1 | 113.8 |
iBu7SSQ-3OH | - | 98.9 | 99.2 | 99.8 | - | 112.7 | 113.0 | 112.0 |
Additive | Concentration of Additive (%) | |||
---|---|---|---|---|
0.1 | 0.5 | 1.0 | 1.5 | |
MFR (g/10 min) | ||||
Neat PE | 2.02 | |||
SSQ-8Cl | 1.83 | 1.88 | 1.90 | - |
iBu7SSQ-Cl | 1.87 | 1.92 | 1.99 | - |
iBu7SSQ-NH2 | 1.87 | 1.91 | 1.98 | - |
iBu7SSQ-Vi | - | 1.91 | 1.99 | 2.03 |
iBu7SSQ-3OH | - | 1.86 | 1.86 | 1.89 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brząkalski, D.; Przekop, R.E.; Sztorch, B.; Jakubowska, P.; Jałbrzykowski, M.; Marciniec, B. Silsesquioxane Derivatives as Functional Additives for Preparation of Polyethylene-Based Composites: A Case of Trisilanol Melt-Condensation. Polymers 2020, 12, 2269. https://doi.org/10.3390/polym12102269
Brząkalski D, Przekop RE, Sztorch B, Jakubowska P, Jałbrzykowski M, Marciniec B. Silsesquioxane Derivatives as Functional Additives for Preparation of Polyethylene-Based Composites: A Case of Trisilanol Melt-Condensation. Polymers. 2020; 12(10):2269. https://doi.org/10.3390/polym12102269
Chicago/Turabian StyleBrząkalski, Dariusz, Robert E. Przekop, Bogna Sztorch, Paulina Jakubowska, Marek Jałbrzykowski, and Bogdan Marciniec. 2020. "Silsesquioxane Derivatives as Functional Additives for Preparation of Polyethylene-Based Composites: A Case of Trisilanol Melt-Condensation" Polymers 12, no. 10: 2269. https://doi.org/10.3390/polym12102269
APA StyleBrząkalski, D., Przekop, R. E., Sztorch, B., Jakubowska, P., Jałbrzykowski, M., & Marciniec, B. (2020). Silsesquioxane Derivatives as Functional Additives for Preparation of Polyethylene-Based Composites: A Case of Trisilanol Melt-Condensation. Polymers, 12(10), 2269. https://doi.org/10.3390/polym12102269