Long-Lasting Examinations of Surface and Structural Properties of Medical Polypropylene Modified with Silver Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Manufacturing
2.2. Material Evaluation
2.2.1. Scanning Electron Microscopy
2.2.2. Roughness
2.2.3. Surface Wettability
2.2.4. Tensile Test
2.2.5. Differential Scanning Calorimetry
2.2.6. X-ray Diffraction Measurement
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Maddah, H.A. Polypropylene as a Promising Plastic: A Review. Am. J. Polym. Sci. 2016, 6, 1–11. [Google Scholar]
- Han, L.; Li, X.; Li, Y.; Huang, T.; Wang, Y.; Wu, J.; Xiang, F. Influence of annealing on microstructure and physical properties of isotactic polypropylene/calcium carbonate composites with β-phase nucleating agent. Mater. Sci. Eng. A 2010, 527, 3176–3185. [Google Scholar] [CrossRef]
- Schimanski, T. High-Performance Polypropylene Structures for Eco-Friendly, Fully Recyclable Composites. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2002. [Google Scholar]
- Li, C.H. Modification and characterization of polypropylene. J. Chem. Pharm. Res. 2014, 6, 1467–1473. [Google Scholar]
- Naddeo, C.; Vertuccio, L.; Barra, G.; Guadagno, L. Nano-Charged Polypropylene Application: Realistic Perspectives for Enhancing Durability. Materials 2017, 10, 943. [Google Scholar] [CrossRef] [PubMed]
- Sastri, V.S. Plastic in Medical Devices: Properties, Requirements and Applications; Elsevier: Burlington, MA, USA, 2013. [Google Scholar]
- Carraher, C.E., Jr. Introduction to Polymer Chemistry, 3rd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 35–36. [Google Scholar]
- Jeong, S.H.; Yeo, S.Y.; Chul, S. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J. Mater. Sci. 2005, 40, 5407–5411. [Google Scholar] [CrossRef]
- Karian, H.G. Handbook of Polypropylene and Polypropylene Composites, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2009; p. 26. [Google Scholar]
- Medical Devices Classifications. Available online: https://www.fda.gov/medical-devices/overview-device-regulation/classify-your-medical-device (accessed on 31 August 2018).
- Bader, G.; Fauconnier, A.; Guyot, B.; Ville, Y. Use of prosthetic materials in reconstructive pelvic floor surgery. An evidence-based analysis. Gynecol. Obstet. Fertil. 2006, 34, 292–297. [Google Scholar] [CrossRef]
- Clavé, A.; Yahi, H.; Hammou, J.C.; Montanari, S.; Gounon, P.; Clavé, H. Polypropylene as a reinforcement in pelvic surgeryis not inert: Comparative analysis of 100 explants. Int. Urogynecol. J. 2010, 21, 261–270. [Google Scholar]
- Pikaart, D.P.; Miklos, J.R.; Moore Robert, D. Laparoscopic Removal of Pubovaginal Polypropylene Tension-Free Tape Slings. J. Soc. Laparoendosc. Surg. 2006, 10, 220–225. [Google Scholar]
- Lee, Y.-S.; Han, D.-H.; Lim, S.-H.; Kim, T.-H.; Choo, M.-S. Efficacy and Safety of “Tension-free” Placement of Gyne mesh PS for the Treatment of Anterior Vaginal Wall Prolapse. Int. Neurourol. J. 2010, 14, 34–42. [Google Scholar] [CrossRef]
- Achtari, C.; Hiscock, R.; O’Reilly, B.A.; Schierlitz, L.; Dwyer, P.L. Risk factors for mesh erosion after transvaginal surgery using polypropylene (Atrium) or composite polypropylene/polyglactin 910 (Vypro II) mesh. Int. Urogynecol. J. 2005, 16, 389–394. [Google Scholar] [CrossRef]
- Prudente, A.; Fávaro, W.J.; LatufFilho, P.; Riccetto, C.L.Z. Host inflammatory response to polypropylene implants: Insights from a quantitative immunohistochemical and birefringence analysis in a rat subcutaneous model. Int. Braz. J. Urol. 2016, 42, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Delgado, K.; Quijada, R.; Palma, R.; Palza, H. Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent. Lett. Appl. Microbiol. 2011, 53, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Oliani, W.L.; Parra, D.F.; Komatsu, L.G.H.; Lincopan, N.; Rangari, V.K.; Lugao, A.B. Nanocomposites Based on Polypropylene with Nanosilver Particles and Antibacterial Behavior—A Review. In Proceedings of the 22°CBECiMat—CongressoBrasileiro de Engenharia e Ciência dos Materiais, Natal, Brazil, 6–10 November 2016; pp. 9357–9368. [Google Scholar]
- Yeo, S.Y.; Jeong, S.H. Preparation and characterization of polypropylene/silver nanocomposite fibers. Polym. Int. 2003, 52, 1053–1057. [Google Scholar] [CrossRef]
- Oliani, W.L.; Parra, D.F.; Komatsu, L.G.H.; Lincopan, N.; Rangari, V.K.; Lugao, A.B. Fabrication of polypropylene/silver nanocomposites for biocidal applications. Mater. Sci. Eng. C 2017, 75, 845–853. [Google Scholar] [CrossRef]
- Jokar, M.; Rahman, R.A.; Ibrahim, N.A.; Abdullah, L.C.; Pan, C. Melt production and antimicrobial efficiency of low-density polyethylene (LDPE)–silver nanocomposite film. Food Bioprocess Technol. 2012, 5, 719–728. [Google Scholar] [CrossRef]
- ISO. Biological Evaluation of Medical Devices—Part 13: Identification and Quantification of Degradation Products from Polymeric Medical Devices; ISO 10993-13:2010; International Organization for Standardization: Geneva, Switzerland, 2010. [Google Scholar]
- ISO. Plastics—Determination of Tensile Properties—Part 1: General Principles; PN-EN ISO 527-1:2012; International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- Turner-Jones, A.; Aizlewood, J.M.; Beckett, D.R. Crystalline forms of isotactic polypropylene. Makromol. Chem. 1964, 75, 134–158. [Google Scholar] [CrossRef]
- Ziąbka, M.; Dziadek, M.; Menaszek, E.; Banasiuk, R.; Królicka, A. Middle Ear Prosthesis with Bactericidal Efficacy—In Vitro Investigation. Molecules 2017, 22, 1681. [Google Scholar] [CrossRef]
- Mandapalli, P.K.; Labala, S.; Chawla, S. Polymer–gold nanoparticle composite films for topical application: Evaluation of physical properties and antibacterial activity. Polym. Compos. 2015, 38, 2829–2840. [Google Scholar] [CrossRef]
- Palza, H. Antimicrobial Polymers with Metal Nanoparticles. Int. J. Mol. Sci. 2015, 16, 2100–2116. [Google Scholar] [CrossRef]
- Monje, A.; Ravidà, A.; Wang, H.L.; Helms, J.A.; Brunski, J.B. Relationship between Primary/Mechanical and Secondary/Biological Implant Stability. Int. J. Oral Maxillofac. Implants. 2019, 34, 7–23. [Google Scholar] [CrossRef]
- Wu, C.L.; Zhang, M.Q.; Rong, M.Z.; Friedrich, K. Tensile performance improvement of low nanoparticles filled-polypropylene composites. Comp. Sci. Technol. 2002, 62, 1327–1340. [Google Scholar] [CrossRef]
- Chan, C.M.; Wu, J.; Li, J.X.; Cheung, Y.K. Polypropylene/calcium carbonate nanocomposites. Polymer 2002, 43, 2981–2992. [Google Scholar] [CrossRef]
- Bikiaris, D.N.; Papageorgiou, G.Z.; Pavlidou, E.; Vouroutzis, N.; Palatzoglou, P.; Karayannidis, G.P. Preparation by Melt Mixing and Characterization ofIsotactic Polypropylene/SiO2Nanocomposites Containing Untreated and Surface-Treated Nanoparticles. J. App. Polym. Sci. 2006, 100, 2684–2696. [Google Scholar] [CrossRef]
- Tjong, S.C. Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R Rep. 2006, 53, 73–197. [Google Scholar] [CrossRef]
- Kontou, E.; Niaounakis, M. Thermo-mechanical properties of LLDPE/SiO2 nanocomposites. Polymer 2006, 47, 1267–1280. [Google Scholar] [CrossRef]
- Tjong, S.C.; Bao, S. Structure and Mechanical Behavior of Isotactic Polypropylene Composites Filled with Silver Nanoparticles. e Polymers 2007, 7, 1618–1624. [Google Scholar] [CrossRef]
- Chae, D.W.; Kim, B.C. Physical Properties of Isotactic Poly(propylene)/Silver Nanocomposites: Dynamic Crystallization Behavior and Resultant Morphology. Macromol. Mater. Eng. 2005, 290, 1149–1156. [Google Scholar] [CrossRef]
- Hybiak, D.; Garbarczyk, J. Silver nanoparticles in isotactic polypropylene (iPP). Part I. Silver nanoparticles as metallic nucleating agents for β-iPP polymorph. Polimery 2014, 59, 585–591. [Google Scholar] [CrossRef]
- Camacho, P.H.; Morales-Cepeda, A.B.; Salas-Papayanopolos, H.; Bautista, J.E.; Castro, C.; Lozano, T.; Lafleur, P.G. Crystallization behavior of polypropylene/silver nanocomposites using polyethylene glycol as reducing agent and interface modifier. J. Thermoplast.Compos. Mater. 2015, 30, 662–677. [Google Scholar] [CrossRef]
- Arutchelvi, J.; Sudhakar, M.; Arkatkar, A.; Doble, M.; Bhaduri, S.; Uppara, P.V. Biodegradation of polyethylene and polypropylene. Ind. J. Biotechnol. 2018, 7, 9–22. [Google Scholar]
- Massey, S.; Adnot, A.; Rjeb, A.; Roy, D. Action of water in the degradation of low-density polyethylene studied by X-ray photoelectron spectroscopy. Express Pol. Lett. 2007, 1, 506–511. [Google Scholar] [CrossRef]
- Hao, L.; Yang, H.; Du, C.; Fu, X.; Zhao, N.; Xu, S.; Wang, Y. Directing the fate of human and mouse mesenchymal stem cells by hydroxyl–methyl mixed self-assembled monolayers with varying wettability. J. Mater. Chem. B 2014, 2, 4794–4801. [Google Scholar] [CrossRef] [PubMed]
Before Incubation | After 12-Months Incubation | After 24-Months Incubation | |||||||
---|---|---|---|---|---|---|---|---|---|
Sample | DSC | XRD | DSC | XRD | DSC | XRD | |||
Tm (°C) | χC (%) | kβ (%) | Tm (°C) | χC (%) | kβ (%) | Tm (°C) | χC (%) | kβ (%) | |
MG12 | 173.9 | 46.4 | 0.6 | 172.9 | 39.2 | 6.1 | 172.2 | 40.3 | 10.1 |
MG12_0.5Ag | 172.3 | 47.6 | 1.2 | 171.2 | 38.3 | 7.5 | 170.7 | 36.8 | 11.6 |
MG12_1Ag | 173.3 | 43.0 | 10.0 | 173.1 | 39.8 | 11.8 | 169.7 | 38.9 | 11.9 |
MG03 | 176.2 | 44.4 | 11.9 | 173.5 | 39.7 | 18.7 | 170.9 | 37.0 | 19.6 |
MG03_0.5Ag | 175.2 | 49.3 | 14.7 | 173.9 | 37.8 | 27.5 | 171.2 | 36.6 | 28.6 |
MG03_1Ag | 173.5 | 43.8 | 16.9 | 173.7 | 39.8 | 18.0 | 170.2 | 37.1 | 25.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziąbka, M.; Dziadek, M. Long-Lasting Examinations of Surface and Structural Properties of Medical Polypropylene Modified with Silver Nanoparticles. Polymers 2019, 11, 2018. https://doi.org/10.3390/polym11122018
Ziąbka M, Dziadek M. Long-Lasting Examinations of Surface and Structural Properties of Medical Polypropylene Modified with Silver Nanoparticles. Polymers. 2019; 11(12):2018. https://doi.org/10.3390/polym11122018
Chicago/Turabian StyleZiąbka, Magdalena, and Michał Dziadek. 2019. "Long-Lasting Examinations of Surface and Structural Properties of Medical Polypropylene Modified with Silver Nanoparticles" Polymers 11, no. 12: 2018. https://doi.org/10.3390/polym11122018
APA StyleZiąbka, M., & Dziadek, M. (2019). Long-Lasting Examinations of Surface and Structural Properties of Medical Polypropylene Modified with Silver Nanoparticles. Polymers, 11(12), 2018. https://doi.org/10.3390/polym11122018