Next Article in Journal
Macromolecular Brushes Based on Poly(L-Lactide) and Poly(ε-Caprolactone) Single and Double Macromonomers via ROMP. Synthesis, Characterization and Thermal Properties
Previous Article in Journal
Critical Factors for the Recycling of Different End-of-Life Materials: Wood Wastes, Automotive Shredded Residues, and Dismantled Wind Turbine Blades
Open AccessArticle

Elucidation of the Relationship between Intrinsic Viscosity and Molecular Weight of Cellulose Dissolved in Tetra-N-Butyl Ammonium Hydroxide/Dimethyl Sulfoxide

Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
*
Author to whom correspondence should be addressed.
Polymers 2019, 11(10), 1605; https://doi.org/10.3390/polym11101605
Received: 18 August 2019 / Revised: 23 September 2019 / Accepted: 26 September 2019 / Published: 1 October 2019
The determination of molecular weight of natural cellulose remains a challenge nowadays, due to the difficulty in dissolving cellulose. In this work, tetra-n-butylammonium hydroxide (TBAH) and dimethyl sulfoxide (DMSO) aqueous solution (THDS) were used to dissolve cellulose in a few minutes under room temperature into true molecular solutions. That is to say, the cellulose was dissolved in the solution in molecular level, and the viscosity of the solution is linearly dependent on the concentration of cellulose. The relationship between the molecular weight of cellulose and the intrinsic viscosity tested in such dilute solutions has been established in the form of the Mark–Houwink equation, η=0.24×DP1.21. The value of 1.21 indicates that the cellulose molecules dissolve in THDS quite well. The cellulose dispersion in the THDS was proved to be in molecular level by atomic force microscope (AFM) and dynamic light scattering (DLS). The reliability of the established Mark–Houwink equation was cross-checked by the gel permeation chromatography (GPC) and traditional copper (II) ethylenediamine (CED) method. No considerate degradation was observed by comparing the intrinsic viscosity and the degree of polymerization (DP) values of the original with and the regenerated cellulose samples. The natural cellulose can be molecularly dispersed in the multiple-component solvent (THDS), and kept stable for a certain period. A time efficient and reliable method has been supplied for determination of the degree of polymerization and the molecular weight of cellulose.
Keywords: cellulose; TBAH/DMSO aqueous solution; intrinsic viscosity; molecular weight cellulose; TBAH/DMSO aqueous solution; intrinsic viscosity; molecular weight
Show Figures

Graphical abstract

MDPI and ACS Style

Bu, D.; Hu, X.; Yang, Z.; Yang, X.; Wei, W.; Jiang, M.; Zhou, Z.; Zaman, A. Elucidation of the Relationship between Intrinsic Viscosity and Molecular Weight of Cellulose Dissolved in Tetra-N-Butyl Ammonium Hydroxide/Dimethyl Sulfoxide. Polymers 2019, 11, 1605.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop