Facile Fabrication of Superhydrophobic Copper- Foam and Electrospinning Polystyrene Fiber for Combinational Oil–Water Separation
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Fabrication of Superhydrophobic Cu Foam
2.3. Fabrication of PS Fiber
2.4. Wettability Measurement and Characterization
2.5. Stability in Rigid Condition
2.6. Oil/Water Separation and Oil Absorption of Superhydrophobic Cu Foam
3. Results and Discussion
3.1. Chemical Etching and Post-Modification
3.2. Structure and Morphology
3.3. Optimization of the Etching Process and Modification
3.4. Water Rebounding and Oil Penetrating Experiments
3.5. Oil-Water Separation and Oil Absorption
3.6. Fabrication of Mini-Foam-Copper Boat and As-Spun PS Fiber
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Rong, J.; Zhang, T.; Qiu, F.; Xu, J.; Zhu, Y.; Yang, D.; Dai, Y. Design and Preparation of Efficient, Stable and Superhydrophobic Copper Foam Membrane for Selective Oil Absorption and Consecutive Oil–water Separation. Mater. Des. 2018, 142, 83–92. [Google Scholar] [CrossRef]
- Sasmal, A.K.; Mondal, C.; Sinha, A.K.; Gauri, S.S.; Pal, J.; Aditya, T.; Ganguly, M.; Dey, S.; Pal, T. Fabrication of Superhydrophobic Copper Surface on Various Substrates for Roll-off, Self-Cleaning, and Water/Oil Separation. ACS Appl. Mater. Interfaces 2014, 6, 22034–22043. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liang, W.X.; Guo, Z.G.; Liu, W.M. Biomimetic Super-Lyophobic and SuperLyophilic Materials Applied for Oil/Water Separation: A New Strategy Beyond Nature. Chem. Soc. Rev. 2015, 44, 336–361. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Sathasivam, S.; Song, J.; Crick, C.R.; Carmalt, C.J.; Robust, I.P. Self-cleaning Surfaces that Function When Exposed to Either Air or Oil. Science 2015, 347, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.L.; Verho, T.; Ras, R.H.A. Moving Superhydrophobic Surfaces Toward Real-world Applications. Science 2016, 352, 142–143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cheng, L.; Wu, H.; Yoshioka, T.; Matsuyama, H. One-step Fabrication of Robust and Anti-oil-fouling Aliphatic Polyketone Composite Membranes for Sustainable and Efficient Filtration of Oil-in-water Emulsions. J. Mater. Chem. A 2018, 6, 24641–24650. [Google Scholar] [CrossRef]
- Parbata, D.; Manna, U. ‘Fish-scale’-mimicked Stretchable and Robust Oil-wettability that Performs in Various Practically Relevant Physically/Chemically Severe Scenarios. J. Mater. Chem. A 2018, 6, 22027–22036. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, X.; Akbulut, O.; Hu, J.; Suib, S.L.; Kong, J.; Stellacci, F. Superwetting Nanowire Membranes for Selective Absorption. Nat. Nanotechnol. 2008, 3, 332–336. [Google Scholar] [CrossRef]
- Si, Y.F.; Guo, Z.G. Superhydrophobic Nanocoatings: From Materials to Fabrications and to Applications. Nanoscale 2015, 7, 5922–5946. [Google Scholar] [CrossRef]
- Cheng, M.J.; Gao, Y.F.; Guo, X.P.; Shi, Z.Y.; Chen, J.F.; Shi, F. A Functionally Integrated Device for Effective and Facile Oil Spill Cleanup. Langmuir 2011, 27, 7371–7375. [Google Scholar] [CrossRef]
- Oil/Water Separation Experience from a Large Oil Field. Available online: https://doi.org/10.2118/93386-PA (accessed on 2 January 2019).
- Emulsion Treatment in the Oil Industry: A Case Study of Oredo Field Crude Oil Emulsion. Available online: https://doi.org/10.2118/178381-MS (accessed on 2 January 2019).
- Dilimon, V.S.; Denayer, J.; Delhalle, J.; Mekhalif, Z. Electrochemical and Spectroscopic Study of the Self-Assembling Mechanism of Normal and Chelating Alkanethiols on Copper. Langmuir 2012, 28, 6857–6865. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Hu, C.; Yang, C.; An, K.; Tang, F.; Tan, J.; Liu, C. Rough Structure of Electrodeposition as a Template for an Ultrarobust Self-Cleaning Surface. ACS Appl. Mater. Interfaces 2017, 9, 16571–16580. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.P.; Choi, S.; Park, S. Extremely Superhydrophobic Surfaces with Micro- and Nanostructures Fabricated by Copper Catalytic Etching. Langmuir 2011, 27, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Yazdanshenas, M.E.; Shateri-Khalilabad, M. One-Step Synthesis of Superhydrophobic Coating on Cotton Fabric by Ultrasound Irradiation. Ind. Eng. Chem. Res. 2013, 52, 12846–12854. [Google Scholar] [CrossRef]
- Coclite, A.M.; Howden, R.M.; Borrelli, D.C.; Petruczok, C.D.; Yang, R.; Yagüe, J.L.; Ugur, A.; Chen, N.; Lee, S.; Jo, W.J.; et al. A New Paradigm for Surface Modifi Cation and Device Fabrication. Adv. Mater. 2013, 25, 5392–5423. [Google Scholar] [CrossRef] [PubMed]
- Shirtcliffe, N.J.; McHale, G.; Newton, M.I.; Zhang, Y. Superhydrophobic Copper Tubes with Possible Flow Enhancement and Drag Reduction. ACS Appl. Mater. Interfaces 2009, 1, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, S.G.; Yu, F.; Sun, W.W.; Zhu, H.Y.; Yin, Y.S. Fabrication and Anti-corrosion Property of Superhydrophobic Hybrid Film on Copper Surface and Its Formation Mechanism. Surf. Interface Anal. 2009, 41, 872–877. [Google Scholar] [CrossRef]
- Chaudhary, A.; Barshilia, H.C. Nanometric Multiscale Rough CuO/Cu(OH)2 Superhydrophobic Surfaces Prepared by a Facile One-Step Solution-Immersion Process: Transition to Superhydrophilicity with Oxygen Plasma Treatment. J. Phys. Chem. C 2011, 115, 18213–18220. [Google Scholar] [CrossRef]
- Liu, L.J.; Xu, F.Y.; Ma, L. Facile Fabrication of a Superhydrophobic Cu Surface via a Selective Etching of High-Energy Facets. J. Phys. Chem. C 2012, 116, 18722–18727. [Google Scholar] [CrossRef]
- Cheng, Z.J.; Du, M.; Fu, K.W.; Zhang, N.Q.; Sun, K.N. pH-Controllable Water Permeation through a Nanostructured Copper Mesh Film. ACS Appl. Mater. Interfaces 2012, 4, 5826–5832. [Google Scholar] [CrossRef]
- Zhang, Q.B.; Xu, D.G.; Hung, T.F.; Zhang, K.L. Facile Synthesis, Growth Mechanism and Reversible Superhydrophobic and Superhydrophilic Properties of Non-flaking CuO Nanowires Grown from Porous Copper Substrates. Nanotechnology 2013, 24, 065602–065614. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Yao, K. Facile Fabrication of Superhydrophobic Surface with Excellent Mechanical Abrasion and Corrosion Resistance on Copper Substrate by a Novel Method. ACS Appl. Mater. Interfaces 2014, 6, 8762–8770. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhang, Q.; Xiao, H.B.; Xu, J.; Li, Q.T.; Pan, X.H.; Huang, Z.Y. Cu Mesh’s Super-hydrophobic and Oleophobic Properties with Variations in Gravitational Pressure and Surface Components for Oil/water Separation Applications. Appl. Surf. Sci. 2014, 314, 408–414. [Google Scholar] [CrossRef]
- Vilaró, I.; Yagüe, J.L.; Borros, S. Superhydrophobic Copper Surfaces with Anti-corrosion Properties Fabricated by Solventless CVD Methods. ACS Appl. Mater. Interfaces 2017, 9, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Guo, Z.G.A. Superhydrophobic Copper Mesh with Microrod Structure for Oil–Water Separation Inspired from Ramee Leaf. Chem. Lett. 2014, 43, 1645–1647. [Google Scholar] [CrossRef]
- Cheng, Z.J.; Wang, J.W.; Lai, H.; Du, Y.; Hou, R.; Li, C.; Zhang, N.Q.; Sun, K.N. pH-Controllable On-Demand Oil/Water Separation on the Switchable Superhydrophobic/Superhydrophilic and Underwater Low-Adhesive Superoleophobic Copper Mesh Film. Langmuir 2015, 31, 1393–1399. [Google Scholar] [CrossRef]
- Wang, B.; Guo, Z.G. pH-responsive Bidirectional Oil–water Separation Material. Chem. Commun. 2013, 49, 9416–9418. [Google Scholar] [CrossRef]
- Shi, Y.L.; Yang, W.; Bai, J.J.; Feng, X.J.; Wang, Y.S. Fabrication of Flower-like Copper Film with Reversible Superhydrophobicity–superhydrophilicity and Anticorrosion Properties. Surf. Coat. Technol. 2014, 253, 148–153. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, W.; Feng, Y.; Yue, G. Fabrication of Superhydrophobic-superoleophilic Copper Mesh via Thermal Oxidation and Its Application in Oil–water Separation. Appl. Surf. Sci. 2016, 367, 493–499. [Google Scholar]
- Guo, J.; Yang, F.C.; Guo, Z.G. Fabrication of Stable and Durable Superhydrophobic Surface on Copper Substrates for Oil–water Separation and Ice-over Delay. J. Colloid Interface Sci. 2016, 466, 36–43. [Google Scholar] [CrossRef]
- Didaskalou, C.; Kupai, J.; Cseri, L.; Barabas, J.; Vass, E.; Holtzl, T.; Szekely, G. Membrane-Grafted Asymmetric Organocatalyst for an Integrated Synthesis–Separation Platform. ACS Catal. 2018, 8, 7430–7438. [Google Scholar] [CrossRef]
- Fodi, T.; Didaskalou, C.; Kupai, J.; Balogh, G.T.; Huszthy, P.; Szekely, G. Nanofiltration-Enabled In Situ Solvent and Reagent Recycle for Sustainable Continuous-Flow Synthesis. Chem. Sustain. Chem. 2017, 10, 3435–3444. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liu, Y.; Zhan, B.; Kaya, C.; Stegmaier, T.; Han, Z.W.; Ren, L.Q. Fabrication of Bioinspired Structured Superhydrophobic and Superoleophilic Copper Mesh for Efficient Oil-water Separation. J. Bionic Eng. 2017, 14, 497–505. [Google Scholar] [CrossRef]
- Laibinis, P.E.; Whitesides, G.M. Self-Assembled Monolayers of n- Alkanethiolates on Copper Are Barrier Films That Protect the Metal against Oxidation by Air. J. Am. Chem. Soc. 1992, 114, 9022–9028. [Google Scholar] [CrossRef]
- Jennings, G.K.; Munro, J.C.; Yong, T.-H.; Laibinis, P.E. Effect of Chain Length on the Protection of Copper by n-Alkanethiols. Langmuir 1998, 14, 6130–6139. [Google Scholar] [CrossRef]
- Sung, M.M.; Sung, K.; Kim, C.G.; Lee, S.S.; Kim, Y. Self-Assembled Monolayers of Alkanethiols on Oxidized Copper Surfaces. J. Phys. Chem. B 2000, 104, 2273–2277. [Google Scholar] [CrossRef]
- Huang, C.; Liu, Q.; Fan, W.; Qiu, X. Boron Nitride Encapsulated Copper Nanoparticles: A Facile One-step Synthesis and Their Effect on Thermal Decomposition of Ammonium Perchlorate. Sci. Rep. 2015, 5, 16736–16746. [Google Scholar] [CrossRef]
- Wang, F.; Lei, S.; Xue, M.; Ou, J.; Li, W. In situ Separation and Collection of Oil from Water Surface via a Novel Superoleophilic and Superhydrophobic Oil Containment Boom. Langmiur 2014, 30, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, C.; Yang, S.; Xie, H.; Gong, M.G.; Xu, X.L. Fabrication of Superhydrophilic-underwater Superolophobic Inorganic anti-Corrsosive Membranes for High-efficiency oil/water Separation. Phys. Chem. Chem. Phys. 2016, 18, 1317–1325. [Google Scholar] [CrossRef]
- Fernando, C.A.N.; De Silva, P.H.C.; Wethasinha, S.K.; Dharmadasa, I.M.; Delsol, T.; Simmonds, M.C. Investigation of n-type Cu2O Layers Prepared by a Low Cost Chemical Method for Use in Photo-voltaic Thin Film Solar Cells. Renew. Energy 2002, 26, 521–529. [Google Scholar] [CrossRef]
- Aizenberg, J.; Black, A.J.; Whitesides, G.M. Controlling Local Disorder in Self-Assembled Monolayers by Patterning the Topography of Their Metallic Supports. Nature 1998, 394, 868–871. [Google Scholar] [CrossRef]
- Calderόn, C.A.; Ojeda, C.; Macagno, V.A.; Paredes-Olivera, P.; Patrito, E.M. Interaction of Oxidized Copper Surfaces with Alkanethiols in Organic and Aqueous Solvents. The Mechanism of Cu2O Reduction. J. Phys. Chem. C 2010, 114, 3945–3957. [Google Scholar] [CrossRef]
- Chen, P.Y.; Tung, S.H. One-Step Electrospinning to Produce Nonsolvent-Induced Macroporous Fibers with Ultrahigh Oil Adsorption Capability. Macromolecules 2017, 50, 2528–2534. [Google Scholar] [CrossRef]
- Lee, M.W.; An, S.; Latthe, S.S.; Lee, C.; Hong, S.; Yoon, S.S. Electrospun Polystyrene Nanofiber Membrane with Superhydrophobicity and Superoleophilicity for Selective Separation of Water and Low Viscous Oil. ACS Appl. Mater. Interfaces 2013, 5, 10597–10604. [Google Scholar] [CrossRef] [PubMed]
C (mM) | 1 | 5 | 10 | 15 | 20 |
WCA (°) | 154.4 ± 1.6 | 158.3 ± 1.5 | 154 ± 1.7 | 150 ± 1.5 | 156 ± 1.7 |
m1 (g) | 0.0447 | 0.0443 | 0.0416 | 0.0417 | 0.0403 |
m2 (g) | 0.4638 | 0.1967 | 0.1981 | 0.1957 | 0.1856 |
Ac | 3.5 | 3.4 | 3.8 | 3.7 | 3.6 |
No. | CTAB (w/v %) | SDS (w/v %) | Tween80 (w/v %) | Trition-X-100 (w/v %) | TBAP (w/v %) | Fiber Diameter (μm) | Absorption Capacity (g g−1) |
---|---|---|---|---|---|---|---|
a | 0.032 | - | - | - | - | 3.4 ± 0.1 | 60.2 ± 4.3 |
b | 1.0 | - | - | - | - | 2.2 ± 0.5 | 85.4 ± 3.2 |
c | - | 0.032 | - | - | - | 2.7 ± 0.1 | 51.2 ± 4.4 |
d | - | 1.0 | - | - | 1.5 ± 0.3 | 72.8 ± 2.5 | |
e | - | - | 0.55 | - | - | 2.8 ± 0.2 | 42.2 ± 4.6 |
f | - | - | 1.0 | - | - | 3.9 ± 0.1 | 40.5 ± 5.1 |
g | - | - | - | 0.012 | - | 1.6 ± 0.6 | 43.1 ± 3.5 |
h | - | - | - | 1.0 | - | 2.1 ± 0.2 | 44.5 ± 2.7 |
i | - | - | - | - | 0.0 | 3.7 ± 0.1 | 24.4 ± 5.3 |
j | - | - | - | - | 1.0 | 2.4 ± 0.2 | 34.8 ± 6.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.-P.; Yang, J.-H.; Li, L.-L.; Cui, C.-X.; Li, Y.; Liu, S.-Q.; Zhou, X.-M.; Qu, L.-B. Facile Fabrication of Superhydrophobic Copper- Foam and Electrospinning Polystyrene Fiber for Combinational Oil–Water Separation. Polymers 2019, 11, 97. https://doi.org/10.3390/polym11010097
Zhang Y-P, Yang J-H, Li L-L, Cui C-X, Li Y, Liu S-Q, Zhou X-M, Qu L-B. Facile Fabrication of Superhydrophobic Copper- Foam and Electrospinning Polystyrene Fiber for Combinational Oil–Water Separation. Polymers. 2019; 11(1):97. https://doi.org/10.3390/polym11010097
Chicago/Turabian StyleZhang, Yu-Ping, Jing-Hua Yang, Ling-Li Li, Cheng-Xing Cui, Ying Li, Shan-Qin Liu, Xiao-Mao Zhou, and Ling-Bo Qu. 2019. "Facile Fabrication of Superhydrophobic Copper- Foam and Electrospinning Polystyrene Fiber for Combinational Oil–Water Separation" Polymers 11, no. 1: 97. https://doi.org/10.3390/polym11010097
APA StyleZhang, Y.-P., Yang, J.-H., Li, L.-L., Cui, C.-X., Li, Y., Liu, S.-Q., Zhou, X.-M., & Qu, L.-B. (2019). Facile Fabrication of Superhydrophobic Copper- Foam and Electrospinning Polystyrene Fiber for Combinational Oil–Water Separation. Polymers, 11(1), 97. https://doi.org/10.3390/polym11010097