Next Article in Journal
Crystal Structure of a Cationic Bile Salt Derivative ([3β,5β,7α,12α]-3-(2-naphthyloylamino)-7,12-dihydroxycholan-24-triethylammonium iodide)
Previous Article in Journal
Phase Behavior and DFT Calculations of Laterally Methyl Supramolecular Hydrogen-Bonding Complexes
Previous Article in Special Issue
Modification of TiO2 Nanowire Arrays with Sn Doping as Photoanode for Highly Efficient Dye-Sensitized Solar Cells
Article Menu
Issue 3 (March) cover image

Export Article

Open AccessArticle
Crystals 2019, 9(3), 134; https://doi.org/10.3390/cryst9030134

Optimal Sr-Doped Free TiO2@SrTiO3 Heterostructured Nanowire Arrays for High-Efficiency Self-Powered Photoelectrochemical UV Photodetector Applications

Department of Optoelectronic Information Science, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
*
Authors to whom correspondence should be addressed.
Received: 31 January 2019 / Revised: 27 February 2019 / Accepted: 28 February 2019 / Published: 6 March 2019
  |  
PDF [3500 KB, uploaded 7 March 2019]
  |     |  

Abstract

Due to their high performance, photoelectrochemical ultraviolet (UV) photodetectors have attracted much attention, but the recombination of photogenerated electrons at the interface of photoanode/electrolyte limited further improvement of photoelectrochemical UV photodetectors (PEC UVPDs). Modification of TiO2 photoanode by SrTiO3 could improve the performance of UVPD, because the energy barrier that is established at the TiO2–SrTiO3 interface could accelerate the separation of the photogenerated electrons-holes pair. However, the recombination center that is caused by the preparation of TiO2@SrTiO3 core-shell heterostructured nanostructure decreases the performance of PEC UVPDs, which is still an important problem that hindered its application in PEC UVPDs. In this paper, we presented a Sr-doped free TiO2@SrTiO3 core-shell heterostructured nanowire arrays as a photoanode for the self-powered PEC UVPD. This will not only accelerate the separation of the photogenerated electrons-holes pair, but it will also reduce the recombination of photogenerated electron-hole pairs in the photoanode. The intrinsic effect of SrTiO3 reaction time on the J variations of UVPDs is investigated in detail. An impressive responsivity of 0.358 A·W−1 was achieved at 360 nm for the UVPD based on TiO2@SrTiO3 core-shell heterostructured nanowire arrays, which heretofore is a considerably high photoresponsivity for self-powered photoelectrochemical UVPDs. Additionally, this UVPD also exhibits a high on/off ratio, fast response time, excellent visible-blind characteristic, and linear optical signal response. View Full-Text
Keywords: Sr–doped free; TiO2@SrTiO3; self-powered; photoelectrochemical; UV photodetector Sr–doped free; TiO2@SrTiO3; self-powered; photoelectrochemical; UV photodetector
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Ni, S.; Guo, F.; Wang, D.; Jiao, S.; Wang, J.; Zhang, Y.; Wang, B.; Zhao, L. Optimal Sr-Doped Free TiO2@SrTiO3 Heterostructured Nanowire Arrays for High-Efficiency Self-Powered Photoelectrochemical UV Photodetector Applications. Crystals 2019, 9, 134.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Crystals EISSN 2073-4352 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top