Raman Characterization of Dioxygen Species as Defects in Single-Crystal ZnO Including Their Pressure Dependence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Raman Spectroscopy
2.3. Microscopy
2.4. Theoretical Calculations
3. Results
3.1. Raman Scattering on ZnO Single Crystals
3.2. Influence of Pressure on ZnO Crystals
4. Discussion
4.1. Dioxygen Species in ZnO
4.2. Defects in ZnO and Experimental Spatial Resolution
4.3. Raman Analysis
4.4. Pressure Influence
4.5. Structural Consequences for ZnO
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arend, H.; Hulliger, J. Crystal Growth in Science and Technology; NATO; Springer: New York, NY, USA, 1989; 438p. [Google Scholar] [CrossRef]
- Hulliger, J. Chemistry and Crystal Growth. Angew. Chem. Int. Ed. 1994, 33, 143–162. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Dogan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. Native point defects in ZnO. Phys. Rev. B 2007, 76, 165202. [Google Scholar] [CrossRef]
- McCluskey, M.D.; Jokela, S.J. Defects in ZnO. J. Appl. Phys. 2009, 106, 071101. [Google Scholar] [CrossRef]
- Ellmer, K.; Klein, A. ZnO and Its Applications. In Transparent Conductive Zinc Oxide; Ellmer, K., Klein, A., Rech, B., Eds.; Springer Series in Materials Science, 104; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Fajzulin, I.; Zhu, X.; Möller, M. Nanoparticulate inorganic UV absorbers: A review. J. Coat. Technol. Res. 2015, 12, 617–632. [Google Scholar] [CrossRef]
- Triboulet, R. Growth of ZnO bulk crystals: A review. Prog. Cryst. Growth Charact. Mater. 2014, 60, 1–14. [Google Scholar] [CrossRef]
- Waag, A. Growth, Springer Series in Materials Science 120 Zinc Oxide; Springer: Berlin/Heidelberg, Germany, 2010; Chapter 3; pp. 39–76. [Google Scholar]
- Ohshima, E.; Ogino, H.; Niikura, I.; Maeda, K.; Sato, M.; Ito, M.; Fukuda, T. Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method. J. Cryst. Growth 2004, 260, 166–170. [Google Scholar] [CrossRef]
- Ara’ujo Junior, E.A.; Nobre, F.X.; da Silva Sousa, G.; Cavalcante, L.S.; de Morais Chaves Santos, M.R.; Souza, F.L.; de Mato, J.M.E. Synthesis, growth mechanism, optical properties and catalytic activity of ZnO microcrystals obtained via hydrothermal processing. RSC Adv. 2017, 7, 24263–24281. [Google Scholar] [CrossRef]
- Fischer, D.; Zagorac, D.; Schön, J.C. The Presence of Superoxide Ions and Related Dioxygen Species in Zinc Oxide—A Structural Characterization by In-Situ Raman Spectroscopy. J. Raman Spectrosc. 2022, 53, 2137–2146. [Google Scholar] [CrossRef]
- Schön, J.C.; Fischer, D. Thin Films and Monolayers—Prediction, Modeling, and Experiments. J. Innov. Mater. Extr. Cond. 2023, 4, 52–76. [Google Scholar]
- Wolf, N.R.; Jaffe, A.; Slavney, A.H.; Mao, W.L.; Leppert, L.; Karunadasa, H.I. Tuning Defects in a Halide Double Perovskite with Pressure. J. Am. Chem. Soc. 2022, 144, 20763–20772. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Dong, H.; Li, Y.; Lin, C.; Park, C.; He, D.; Yang, W. Phase transition induced strain in ZnO under high pressure. Sci. Rep. 2016, 6, 24958. [Google Scholar] [CrossRef]
- Thyr, J.; Österland, L.; Edvinsson, T. Polarized and non-polarized Raman spectroscopy of ZnO crystals: Method for determination of crystal growth and crystal plane orientation for nanomaterials. J. Raman Spectrosc. 2021, 52, 1395–1405. [Google Scholar] [CrossRef]
- Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C.M.; Civalleri, B.; Maschio, L.; Rérat, M.; Casassa, S.; Baima, J.; Salustro, S.; et al. Quantum-mechanical condensed matter simulations with CRYSTAL. WIREs Comput. Mol. Sci. 2018, 8, e1360. [Google Scholar] [CrossRef]
- Hundt, R. KPLOT: A Program for Plotting and Analysing Crystal Structures; Technicum Scientific Publishing: Stuttgart, Germany, 2016. [Google Scholar]
- Pascale, F.; Zicovich-Wilson, C.M.; Gejo, F.L.; Civalleri, B.; Orlando, R.; Dovesi, R. The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. J. Comput. Chem. 2004, 25, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, M.; Rerat, M.; Orlando, R.; Dovesi, R.; Bush, I.J. Coupled perturbed Kohn-Sham calculation of static polarizabilities of periodic compounds. J. Phys. Conf. Series 2008, 117, 012016. [Google Scholar] [CrossRef]
- Maschio, L.; Kirtman, B.; Rérat, M.; Orlando, R.; Dovesi, R. Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory. J. Chem. Phys. 2013, 139, 164101. [Google Scholar] [CrossRef]
- Maschio, L.; Kirtman, B.; Rérat, M.; Orlando, R.; Dovesi, R. Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. II. Validation and comparison with experiments. J. Chem. Phys. 2013, 139, 164102. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Fischer, D.; Zagorac, D.; Küster, K.; Schön, J.C. Synthesis of Two Structurally Different MgO Films Containing Dioxygen Species: Dioxygen Embedded at Grain Boundaries, and as Components of a Superfilled Rock Salt Structure. Coatings 2024, 14, 1563. [Google Scholar] [CrossRef]
- Zagorac, D.; Schön, J.C.; Zagorac, J.; Jansen, M. Prediction of structure candidates for zinc oxide as a function of pressure and investigation of their electronic properties. Phys. Rev. B 2014, 89, 075201. [Google Scholar] [CrossRef]
- Arguello, C.A.; Rousseau, D.L.; Porto, S.P.S. First-Order Raman Effect in Wurtzite-Type Crystals. Phys. Rev. 1969, 181, 1351–1363. [Google Scholar] [CrossRef]
- Daman, T.C.; Porto, S.P.S.; Tell, B. Raman Effect in Zinc Oxide. Phys. Rev. 1966, 142, 570–574. [Google Scholar] [CrossRef]
- Cuscó, R.; Alarcón-Lladó, E.; Ibáñez, J.; Artús, L.; Jiménez, J.; Wang, B.; Callahan, M.J. Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 2007, 75, 165202. [Google Scholar] [CrossRef]
- Kumar, S.P.; Kumar, T.S.; Kaur, H.; Kumar, A.; Kumar, A. Optimizing photocatalysis: Tuning europium concentration in zinc oxide nanoparticles for superior performance. Phys. B 2025, 697, 416699. [Google Scholar]
- Knust, S.; Ruhm, L.; Kuhlmann, A.; Meinderink, D.; Bürger, J.; Lindner, J.K.N.; de los Arcos de Pedro, M.T.; Grundmeier, G. In situ backside Raman spectroscopy of zinc oxide nanorods in an atmospheric-pressure dielectric barrier discharge plasma. J. Raman Spectrosc. 2021, 52, 1237–1245. [Google Scholar] [CrossRef]
- Vedam, K.; Davis, T.A. Pressure Dependence of the Refractive Indices of the Hexagonal Crystals Beryl, α-CdS, α-ZnS, and ZnO. Phys. Rev. 1969, 181, 1196–1200. [Google Scholar] [CrossRef]
- Granville, S.; Meyer, C.; Preston, A.R.H.; Ludbrook, B.M.; Ruck, B.J.; Trodahl, H.J.; Paudel, T.R.; Lambrecht, W.R.L. Vibrational properties of rare-earth nitrides: Raman spectra and theory. Phys. Rev. B 2009, 79, 054301. [Google Scholar] [CrossRef]
- Kihara, K.; Donnay, G. Anharmonic Thermal Vibrations in ZnO. Can. Mineral. 1985, 23, 647–654. [Google Scholar]
- Sowaa, H.; Ahsbahsa, H. High-pressure X-ray investigation of zincite ZnO single crystals using diamond anvils with an improved shape. J. Appl. Cryst. 2006, 39, 169–175. [Google Scholar] [CrossRef]
- Decremps, F.; Pellicer-Porres, J.; Saitta, A.M.; Chervin, J.-C.; Polian, A. High-pressure Raman spectroscopy study of wurtzite ZnO. Phys. Rev. B 2002, 65, 092101. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Florent, M.; Wallace, R.; Secor, J.; Karwacki, C.; Bandosz, T.J. Zinc peroxide nanoparticles: Surface, chemical and optical properties and the effect of thermal treatment on the detoxification of mustard gas. Appl. Catal. B 2018, 226, 429–440. [Google Scholar] [CrossRef]
- Bösch, M.; Känzig, W. Optische Eigenschaften und Elektronische Struktur von Alkali-Hyperoxide-Kristallen. Helv. Phys. Acta 1975, 48, 743–785. [Google Scholar]
- Lucazeau, G. Effect of pressure and temperature on Raman spectra of solids: Anharmonicity. J. Raman Spectrosc. 2003, 34, 478–496. [Google Scholar] [CrossRef]
- Serrano, J.; Romero, A.H.; Manjon, F.J.; Lauck, R.; Cardona, M.; Rubio, A. Pressure dependence of the lattice dynamics of ZnO: An ab initio approach. Phys. Rev. B 2004, 69, 094306. [Google Scholar] [CrossRef]
- Blunt, F.J.; Hendra, P.J.; Mackenzie, J.R. The Laser Raman Spectra of Salts containing the Anions O2− and O22−. J. Chem. Soc. D 1969, 242, 278–279. [Google Scholar] [CrossRef]
- Radjenovic, P.M.; Hardwick, L.J. Evaluating chemical bonding in dioxides for the development of metal–oxygen batteries: Vibrational spectroscopic trends of dioxygenyls, dioxygen, superoxides and peroxides. Phys. Chem. Chem. Phys. 2019, 21, 1552–1563. [Google Scholar] [CrossRef] [PubMed]
- Erhart, P.; Albe, K.; Klein, A. First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects. Phys. Rev. B 2006, 73, 205203. [Google Scholar] [CrossRef]
- Lee, E.-C.; Kim, Y.-S.; Jin, Y.-G.; Chang, K.J. Compensation mechanism for N acceptors in ZnO. Phys. Rev. B 2001, 64, 085120. [Google Scholar] [CrossRef]
- Limpijumnong, S.; Li, X.; Wei, S.-H.; Zhang, S.B. Substitutional diatomic molecules NO, NC, CO, N2, and O2: Their vibrational frequencies and effects on doping of ZnO. Appl. Phys. Lett. 2005, 86, 211910. [Google Scholar] [CrossRef]
- Ayoub, I.; Kumar, V.; Abolhassani, R.; Sehgal, R.; Sharma, V.; Sehgal, R.; Swart, H.C.; Mishra, Y.K. Advances in ZnO: Manipulation of defects for enhancing their technological potentials. Nanotechnol. Rev. 2022, 11, 575–619. [Google Scholar] [CrossRef]
- Petukhov, V.; Bakin, A.; El-Shaer, A.-H.; Mofor, A.-C.; Waag, A. Etch-Pit Density Investigation on Both Polar Faces of ZnO Substrates, Electrochem. Solid-State Lett. 2007, 10, H357. [Google Scholar] [CrossRef]
- Demyanets, L.N.; Lyutin, V. Status of hydrothermal growth of bulk ZnO: Latest issues and advantages. J. Cryst. Growth 2008, 310, 993–999. [Google Scholar] [CrossRef]
- Peng, C.-X.; Wang, K.-F.; Zhang, Y.; Guo, F.-L.; Weng, H.-M.; Ye, B.-J. Evolution of native point defects in ZnO bulk probed by positron annihilation spectroscopy. Chin. Phys. B 2009, 18, 2072. [Google Scholar]
- Park, J.; Rim, Y.S.; Senanayake, P.; Wu, J.; Streit, D. Electrical Defect State Distribution in Single Crystal ZnO Schottky Barrier Diodes. Coatings 2020, 10, 206. [Google Scholar] [CrossRef]
- Scheffler, L.; Kolkovsky, V.L.; Lavrov, E.V.; Weber, J. Deep level transient spectroscopy studies of n-type ZnO single crystals grown by different techniques. J. Phys. Condens. Matter. 2011, 23, 334208. [Google Scholar] [CrossRef]
- Mohseni, H.; Mensah, B.A.; Gupta, N.; Srinivasan, S.G.; Scharf, T.W. Exceptional Friction Mitigation via Subsurface Plastic Shear in Defective Nanocrystalline Ceramics. Mater. Res. Lett. 2015, 3, 23–29. [Google Scholar] [CrossRef]
- Bradby, J.E.; Kucheyev, S.O.; Williams, J.S.; Jagadish, C.; Swain, M.V.; Munroe, P.; Phillips, M.R. Contact-induced defect propagation in ZnO. Appl. Phys. Lett. 2002, 80, 4537–4539. [Google Scholar] [CrossRef]
- Millot, M.; Tena-Zaera, R.; Munoz-Sanjose, V.; Broto, J.-M.; Gonzalez, J. Anharmonic effects in ZnO optical phonons probed by Raman spectroscopy. Appl. Phys. Lett. 2010, 96, 152103. [Google Scholar] [CrossRef]
- Morell, G.; Perez, W.; Ching-Prado, E.; Katiyar, R.S. Anharmonic interactions in beryllium oxide. Phys. Rev. B 1996, 53, 5388–5395. [Google Scholar] [CrossRef]
- Chen, Y.; Turiansky, M.E.; Van de Walle, C.G. First-principles study of quantum defect candidates in beryllium oxide. Phys. Rev. B 2022, 106, 174113. [Google Scholar] [CrossRef]
- Downs, J.W.; Ross, F.K.; Gibbs, G.V. The effects of extinction on the refined structural parameters of crystalline BeO: A neutron and γ-ray diffraction study. Acta Cryst. B 1985, 41, 425–431. [Google Scholar] [CrossRef]
- Kucheyev, S.O.; Bradby, J.E.; Williams, J.S.; Jagadish, C.; Swain, M.V. Mechanical deformation of single-crystal ZnO. Appl. Phys. Lett. 2002, 80, 956–958. [Google Scholar] [CrossRef]
- Wood, G.C.; Hodgkiess, T. The Hardness of Oxides at ambient Temperatures. Werkst. Korrosion 1972, 23, 766–773. [Google Scholar] [CrossRef]
- Khan, M.Y.; Brown, L.M.; Chaudhri, M.M. The effect of crystal orientation on the indentation cracking and hardness of MgO single crystals. J. Phys. D Appl. Phys. 1992, 25, A257–A265. [Google Scholar] [CrossRef]
- Maeda, K.; Sato, M.; Niikura, I.; Fukuda, T. Growth of 2 inch ZnO bulk single crystal by the hydrothermal method. Semicond. Sci. Technol. 2005, 20, S49. [Google Scholar] [CrossRef]
- Fischer, D.; Zagorac, D.; Schön, J.C. Fundamental insight into the formation of the zinc oxide crystal structure. Thin Solid Films 2023, 782, 140017. [Google Scholar] [CrossRef]
- Fischer, D.; Zagorac, D. UV-VIS Transmittance and Band Gap of Zinc Oxide Films Prepared by Femtosecond Pulse-Laser-Deposition. J. Innov. Mater. Extr. Cond. 2024, 5, 136–143. [Google Scholar]
- Jungwirth, N.R.; Pai, Y.Y.; Chang, H.S.; MacQuarrie, E.R.; Nguyen, K.X.; Fuchs, G.D. A single-molecule approach to ZnO defect studies: Single photons and single defects. Appl. Phys. 2014, 116, 043509. [Google Scholar] [CrossRef]
- Vyas, S. A Short Review on Properties and Applications of Zinc Oxide Based Thin Films and Devices. Johns. Matthey Technol. Rev. 2020, 64, 202–218. [Google Scholar] [CrossRef]
- Constantinoiu, I.; Viespe, C. ZnO Metal Oxide Semiconductor in Surface Acoustic Wave Sensors: A Review. Sensors 2020, 20, 5118. [Google Scholar] [CrossRef] [PubMed]
- Lushchik, A.; Kuzovkov, V.N.; Kotomin, E.A.; Prieditis, G.; Seeman, V.; Shablonin, E.; Vasil’chenko, E.; Popov, A.I. Evidence for the formation of two types of oxygen interstitials in neutron-irradiated α-Al2O3 single crystals. Sci. Rep. 2021, 11, 20909. [Google Scholar] [CrossRef] [PubMed]
- Bocharov, D.; Chesnokov, A.; Chikvaidze, G.; Gabrusenoks, J.; Ignatans, R.; Kalendarev, R.; Krack, M.; Kundzins, K.; Kuzmin, A.; Mironova-Ulmane, N.; et al. A comprehensive study of structure and properties of nanocrystalline zinc peroxide. J. Phys. Chem. Solids 2022, 160, 110318. [Google Scholar] [CrossRef]
Wavenumber | Modes Ideal ZnO | Wavenumber | Additional Modes ZnO with Dioxygen Species |
---|---|---|---|
98 | E2-low | 70–90, 105–150 | A/E :: O-O |
- | A1-TO | ||
405 sh | E2-high :: O-O, | 203 | A1 :: O-O |
E1-TO | 333 | A1 :: O-O | |
438 | E2-high | 539 | A1 :: O-O |
576 | A1-LO | 660, 719 | A/E :: O-O |
- | E1-LO | 1106, 1156 | ν O-O |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischer, D.; Bloos, D.; Krajewska, A.; McNally, G.M.; Zagorac, D.; Schön, J.C. Raman Characterization of Dioxygen Species as Defects in Single-Crystal ZnO Including Their Pressure Dependence. Crystals 2025, 15, 574. https://doi.org/10.3390/cryst15060574
Fischer D, Bloos D, Krajewska A, McNally GM, Zagorac D, Schön JC. Raman Characterization of Dioxygen Species as Defects in Single-Crystal ZnO Including Their Pressure Dependence. Crystals. 2025; 15(6):574. https://doi.org/10.3390/cryst15060574
Chicago/Turabian StyleFischer, Dieter, Dominik Bloos, Aleksandra Krajewska, Graham M. McNally, Dejan Zagorac, and Johann Christian Schön. 2025. "Raman Characterization of Dioxygen Species as Defects in Single-Crystal ZnO Including Their Pressure Dependence" Crystals 15, no. 6: 574. https://doi.org/10.3390/cryst15060574
APA StyleFischer, D., Bloos, D., Krajewska, A., McNally, G. M., Zagorac, D., & Schön, J. C. (2025). Raman Characterization of Dioxygen Species as Defects in Single-Crystal ZnO Including Their Pressure Dependence. Crystals, 15(6), 574. https://doi.org/10.3390/cryst15060574