Enhancing the Energy Storage Properties and Breakdown Strength of Lead-Free Bismuth-Sodium Titanate-Based Ceramics Through NaNbO3 Doping
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Sample Fabrication
2.2. Structure and Electrical Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, L.; Liu, Q.; Zhang, S.; Li, J. Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification. J. Mater. Chem. C 2016, 4, 8380–8384. [Google Scholar] [CrossRef]
- Ren, X.; Jin, L.; Zhou, H.; Peng, Z.; Chen, B.; Qiao, X.; Wu, D.; Li, G.; Du, H.; Yang, Z.; et al. Regulation of energy density and efficiency in transparent ceramics by grain refinement. Chem. Eng. J. 2020, 390, 124566. [Google Scholar] [CrossRef]
- Yang, H.; Cai, Z.; Zhu, C.; Feng, P.; Wang, X. Ultra-High Energy Storage Performance in BNT-based Ferroelectric Ceramics with Simultaneously Enhanced Polarization and Breakdown Strength. ACS Sustain. Chem. Eng. 2022, 10, 9176–9183. [Google Scholar] [CrossRef]
- Cao, L.; Yuan, Y.; Zhang, X.; Li, E.; Zhang, S. Relaxor Nature and Energy Storage Properties of Sr2–xMxNaNb5–xTixO15 (M=La3+ and Ho3+) Tungsten Bronze Ceramics. ACS Sustain. Chem. Eng. 2020, 8, 17527–17539. [Google Scholar] [CrossRef]
- Prateek; Thakur, V.K.; Gupta, R.K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects. Chem. Rev. 2016, 116, 4260–4317. [Google Scholar] [CrossRef]
- Li, D.; Shen, Z.; Li, Z.; Luo, W.; Song, F.; Wang, X.; Wang, Z.; Li, Y. Optimization of polarization behavior in (1–x)BSBNT–xNN ceramics for pulsed power capacitors. J. Mater. Chem. 2020, C8, 7650–7657. [Google Scholar] [CrossRef]
- Pan, Z.; Hao, H.; Li, D.X.; Guo, Q.; Yao, Z.; Cao, M.; Liu, H. Sm doped BNT-BZT lead-free ceramic for energy storage applications with broad temperature range. J. Mater. Sci. Mater. Electron. 2022, 33, 14644–14654. [Google Scholar] [CrossRef]
- Fang, Y.; Shui, A.; Yu, H.L.; Zhong, X. High energy storage performance in SrZrO3-modified quaternary relaxor ferroelectric ceramics. Ceram. Int. 2024, 10, 427. [Google Scholar] [CrossRef]
- Zhang, F.; Qiao, X.; Zhou, Q.; Shi, Q.; Chao, X.; Yang, Z.; Wu, D. High energy and power density achieved in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics with excellent thermal stability. J. Alloy. Compd. 2021, 875, 160005. [Google Scholar] [CrossRef]
- Yan, F.; Bai, H.; Ge, G.; Lin, J.; Shi, C.; Zhu, K.; Shen, B.; Zhai, J.; Zhang, S. Composition and Structure Optimized BiFeO3-SrTiO3 Lead-Free Ceramics with Ultrahigh Energy Storage Performance. Small 2022, 18, 2106515. [Google Scholar] [CrossRef]
- Pan, Z.; Ding, Q.; Yao, L.; Huang, S.; Xing, S.; Liu, J.; Chen, J.; Zhai, J. Simultaneously enhanced discharge energy density and efficiency in nanocomposite film capacitors utilizing two-dimensional NaNbO3@Al2O3 platelets. Nanoscale 2019, 11, 10546–10554. [Google Scholar] [PubMed]
- Yang, J.; Ge, G.; Chen, C.; Shen, B.; Zhai, J.; Chou, X. Field-induced strain engineering to optimize antiferroelectric ceramics in breakdown strength and energy storage performance. Acta Mater. 2023, 257, 119186. [Google Scholar] [CrossRef]
- Li, W.; Zhou, D.i.; Pang, L.; Xu, R.; Guo, H. Novel barium titanate based capacitors with high energy density and fast discharge performance. J. Mater. Chem. A 2017, 37, 19607–19612. [Google Scholar] [CrossRef]
- Yuan, Q.; Li, G.; Yao, F.; Cheng, S.-D.; Wang, Y.; Ma, R.; Mi, S.-B.; Gu, M.; Wang, K.; Li, J.-F.; et al. Simultaneously achieved temperature- insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy 2018, 52, 203–210. [Google Scholar]
- Qu, N.; Du, H.; Hao, X. A new strategy to realize high comprehensive energy storage properties in lead-free bulk ceramics. J. Mater. Chem. C 2019, 26, 7993–8002. [Google Scholar]
- Wang, J.; Li, Y.; Sun, N.; Du, J.; Zhang, Q.; Hao, X. Bi(Mg0.5Ti0.5)O3 addition induced high recoverable energy-storage density and excellent electrical properties in leadfree Na0.5Bi0.5TiO3-based thick films. J. Eur. Ceram. Soc. 2019, 39, 255–263. [Google Scholar]
- Zhang, M.; Yang, H.; Li, D.a.; Ma, L.; Lin, Y. Giant energy storage efficiency and high recoverable energy storage density achieved in K0.5Na0.5NbO3- Bi(Zn0.5Zr0.5)O3 ceramics. J. Mater. Chem. 2020, 26, 8777–8785. [Google Scholar]
- Zhang, H.; Chen, C.; Zhao, X.; Deng, H.; Ren, B.; Li, X.; Luo, H.; Li, S. Structure and electrical properties of Na1/2Bi1/2TiO3-xK1/2Bi1/2TiO3 lead-free ferroelectric single crystals. Solid State Commun. 2015, 20, 1125–1129. [Google Scholar]
- Wang, L.; Cao, W.; Liang, C.; Wang, C.; Zhao, H.; Wang, C. Excellent energy-storage performance in BNT-BT lead-free ceramics through optimized electromechanical breakdown. Mat. Today Phys. 2024, 47, 101545. [Google Scholar] [CrossRef]
- Li, Z.; Xie, B.; Marwat, M.A.; Xue, F.; Liu, Z.; Guo, K.; Mao, P.; Luo, H.; Zhang, H. High energy density of Sm-doped Na0.5Bi0.5TiO3- Sr0.7Bi0.2TiO3 relaxor ferroelectric ceramics. J. Mater. Chem. C 2024, 12, 13946. [Google Scholar] [CrossRef]
- Yang, Z.; Du, H.; Jin, L.; Poelman, D. High-performance lead-free bulk ceramics for electrical energy storage applications: Design strategies and challenges. J. Mater. Chem. A 2021, 9, 18026–18085. [Google Scholar] [CrossRef]
- Gao, S.; He, X.; Liu, Y.; V’yunov, O.; Pang, D. High Energy Storage Characteristics of (0.5−x)BiFeO3-0.5 Bi0.5Na0.5TiO3-xBaTiO3 Ternary Lead-Free Ferroelectric Ceramics under Low Electric Field. ACS Appl. Electron. Mater. 2024, 6, 6411–6420. [Google Scholar] [CrossRef]
- Brown-Shaklee, H.; Brennecka, G.; Cann, D.; Raengthon, N. Dielectric properties of BaTiO3-Bi(Zn1/2Ti1/2)O3-NaNbO3 solid solutions. J. Mater. Sci. 2013, 48, 2245–2250. [Google Scholar]
- Pengpat, K.; Jarupoom, P.; Kantha, P.; Eitssayeam, S.; Intatha, U.; Rujijanagul, G.; Tunkasiri, T. Phase formation and electrical properties of lead-free bismuth sodium titanate-potassium niobate ceramics. Curr. Appl. Phys. 2008, 8, 241–245. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, H.; Hao, H.; Song, Z.; Zhang, S. Structure property relationship in BaTiO3-Na0.5Bi0.5TiO3-Nb2O5-NiO X8R system. J. Mater. Sci. 2015, 98, 1574–1579. [Google Scholar] [CrossRef]
- Qi, H.; Zuo, R. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. J. Mater. Chem. A 2019, 8, 3971–3978. [Google Scholar] [CrossRef]
- Wu, Y.; Fan, Y.; Liu, N.; Peng, P.; Zhou, M.; Yan, S.; Cao, F.; Dong, X.; Wang, G. Enhanced energy storage properties in sodium bismuth titanate-based ceramics for dielectric capacitor applications. J. Mater. Chem. 2019, C21, 6222–6230. [Google Scholar] [CrossRef]
- Zhu, C.; Cai, Z.; Luo, B.; Guo, L.; Li, L.; Wang, X. High temperature lead-free BNT based ceramics with stable energy storage and dielectric properties. J. Mater. Chem. A 2020, 2, 683–692. [Google Scholar] [CrossRef]
- Zhao, s.; Zhang, Y.; Zhang, Q.; Li, H.; Gao, J.; Li, M.; Zhang, W.; Liu, J.; Yang, B. Improved electric-field-induced strain and strong photoluminescence properties in novel Er3+-modified 0.93Bi0.5Na0.5TiO3-0.07BaTiO3 multifunctional ceramics. Ceram. Int. 2022, 48, 14301–14306. [Google Scholar] [CrossRef]
- Ma, W.; Zhu, Y.; Marwat, M.; Fan, P.; Xie, B.; Salamon, D.; Ye, Z.; Zhang., H. Enhanced energy-storage performance with excellent stability under low electric fields in BNT–ST relaxor ferroelectric ceramics. J. Mater. Chem. C 2019, 7, 281. [Google Scholar] [CrossRef]
- Pang, F.; Chen, X.; Shi, J.; Sun, C.; Chen, H.; Dong, X.; Zhou, H. Bi(Mg0.5Sn0.5)O3-Doped NaNbO3 Lead-free Ceramics Achieve Excellent Energy-Storage and Charge/Discharge Performances. ACS Sustain. Chem. Eng. 2021, 9, 4863–4871. [Google Scholar]
- Qu, B.; Du, H.; Yang, Z.; Liu, Q. Large recoverable energy storage density and low sintering temperature in potassium-sodium niobate-based ceramics for multilayer pulsed power capacitors. J. Am. Ceram. Soc. 2017, 100, 1517–1526. [Google Scholar]
- Chen, H.; Chen, X.; Shi, J.; Sun, C.; Dong, X.; Pang, F.; Zhou, H. Achieving ultrahigh energy storage density in NaNbO3-Bi(Ni0.5Zr0.5)O3 solid solution by enhancing the breakdown electric field. Ceram. Int. 2020, 46, 28407–28413. [Google Scholar]
- Wang, E.; Yue, L.; Chu, Y.; Sun, C.; Zhao, J.; Zhao, S.; Liu, J.; Zhang, Y. and Zhang, L..High Energy Storage Performance in Pb1−xLax(Hf0.45Sn0.55)0.995O3 Antiferroelectric Ceramics. Crystals 2024, 14, 732. [Google Scholar]
- Yang, Z.; Yuan, Y.; Cao, L.; Li, E.; Zhang, S. Relaxor ferroelectric (Na0.5Bi0.5)0.4 Sr0.6TiO3-based ceramics for energy storage application. Ceram. Int. 2020, 46, 11282–11289. [Google Scholar]
- Kim, C.; Pilania, G.; Ramprasad, R. Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX3 perovskites. J. Phys. Chem. C. 2016, 120, 14575–14580. [Google Scholar]
- Xu, R.; Xu, Z.; Feng, Y.; Wei, X.; Tian, J.; Huang, D. Evaluation of discharge energy density of antiferroelectric ceramics for pulse capacitors. Appl. Phys. Lett. 2016, 109, 032903. [Google Scholar]
- Wu, Y.; Wang, G.; Jiao, Z.; Fan, Y.; Peng, P.; Dong, X. High electrostrictive properties and energy storage performances with excellent thermal stability in Nb-doped Bi0.5Na0.5TiO3-based ceramics. RSC Adv. 2019, 37, 21355–21362. [Google Scholar]
- Liu, X.; Tan, X. Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free Ceramics. Adv. Mater. 2016, 3, 574–578. [Google Scholar] [CrossRef]
- Luo, N.; Han, K.; Liu, L.; Peng, B.; Wang, X.; Hu, C.; Zhou, H.; Feng, Q.; Chen, X.; Wei, Y. Lead-free Ag1-3xLaxNbO3 antiferroelectric ceramics with high- energy storage density and efficiency. J. Am. Ceram. Soc. 2019, 102, 4640–4647. [Google Scholar]
- Luo, N.; Han, K.; Zhuo, F.; Xu, C.; Zhang, G.; Liu, L.; Chen, X.; Hu, C.; Zhou, H.; Wei, Y. Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density. J. Mater. Chem. A 2019, 7, 14118–14128. [Google Scholar]
- Li, S.; Nie, H.; Wang, G.; Xu, C.; Liu, N.; Zhou, M.; Cao, F.; Dong, X. Significantly enhanced energy storage performance of rare-earth-modified silver niobate lead-free antiferroelectric ceramics via local chemical pressure tailoring. J. Mater. Chem. C 2019, 7, 1551–1560. [Google Scholar]
- Gao, J.; Zhang, Y.; Zhao, L.; Lee, K.; Liu, Q.; Studer, A.; Hinterstein, M.; Zhang, S.; Li, J. Enhanced antiferroelectric phase stability in La-doped AgNbO3: Perspectives from the microstructure to energy storage properties. J. Mater. Chem. A 2019, 7, 2225–2232. [Google Scholar]
- Shao, T.; Du, H.; Ma, H.; Qu, S.; Wang, J.; Wang, J.; Wei, X.; Xu, Z. Potassium-sodium niobate based lead-free ceramics: Novel electrical energy storage materials. J. Mater. Chem. A 2017, 5, 554–563. [Google Scholar]
- Yang, Z.; Du, H.; Qu, S.; Hou, Y.; Ma, H.; Wang, J.; Wang, J.; Wei, X.; Xu, Z. Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics. J. Mater. Chem. A. 2016, 4, 13778–13785. [Google Scholar]
- Zhang, L.; Pu, Y.; Chen, M.; Wei, T.; Peng, X. Novel Na0.5Bi0.5TiO3 based lead-free energy storage ceramics with high power and energy density and excellent hightemperature stability. Chem. Eng. J 2020, 383, 123154. [Google Scholar]
- Liu, X.; Zhao, Y.; Shi, J.; Du, H.; Xu, X.; Lu, H.; Che, J.; Li, X. Improvement of dielectric and ferroelectric properties in bismuth sodium titanate based relaxors through Bi non-stoichiometry. J. Alloys. Compd. 2019, 799, 231–238. [Google Scholar] [CrossRef]
- Xie, H.; Zhao, Y.; Yang, L.; Pang, S.; Yuan, C.; Wang, H.; Zhou, C.; Xu, J. Comparative studies on structure, dielectric, strain and energy storage properties of (Bi0.5Na0.5)0.94Ba0.06Ti0.965(Mg1/3Nb2/3)0.035O3 lead-free ceramics prepared by traditional and two-step sintering method. J. Mater. SCI.—Mater. El. 2018, 29, 5349–5355. [Google Scholar] [CrossRef]
- Zheng, D.; Zuo, R. Enhanced energy storage properties in La(Mg1/2Ti1/2)O3-modified BiFeO3-BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range. J. Eur. Ceram. Soc. 2017, 37, 413–418. [Google Scholar]
- Li, F.; Zhai, J.; Shen, B.; Zeng, H.; Jian, X.; Lu, S. Multifunctionality of lead-free BiFeO3-based ergodic relaxor ferroelectric ceramics: High energy storage performance and electrocaloric effect. J. Alloys. Compd. 2019, 803, 185–192. [Google Scholar]
- Liu, N.; Liang, R.; Zhao, X.; Xu, C.; Zhou, Z.; Dong, X. Novel bismuth ferrite-based leadfree ceramics with high energy and power density. J. Am. Ceram. Soc. 2018, 101, 3259–3265. [Google Scholar] [CrossRef]
- Zhu, L.; Lei, X.; Zhao, L.; Hussain, M.; Zhao, G.; Zhang, B. Phase structure and energy storage performance for BiFeO3-BaTiO3 based lead-free ferroelectric ceramics. Ceram. Int. 2019, 45, 20266–20275. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Guo, H.; Li, H.; Li, H.; Yue, L.; Wang, R.; Si, J.; Zhao, Q.; Zhang, Y. Enhancing the Energy Storage Properties and Breakdown Strength of Lead-Free Bismuth-Sodium Titanate-Based Ceramics Through NaNbO3 Doping. Crystals 2025, 15, 287. https://doi.org/10.3390/cryst15030287
Gao J, Guo H, Li H, Li H, Yue L, Wang R, Si J, Zhao Q, Zhang Y. Enhancing the Energy Storage Properties and Breakdown Strength of Lead-Free Bismuth-Sodium Titanate-Based Ceramics Through NaNbO3 Doping. Crystals. 2025; 15(3):287. https://doi.org/10.3390/cryst15030287
Chicago/Turabian StyleGao, Jingxia, Haizhou Guo, Hongxia Li, Hui Li, Liqin Yue, Rui Wang, Jiangyan Si, Qiaoqiao Zhao, and Yangyang Zhang. 2025. "Enhancing the Energy Storage Properties and Breakdown Strength of Lead-Free Bismuth-Sodium Titanate-Based Ceramics Through NaNbO3 Doping" Crystals 15, no. 3: 287. https://doi.org/10.3390/cryst15030287
APA StyleGao, J., Guo, H., Li, H., Li, H., Yue, L., Wang, R., Si, J., Zhao, Q., & Zhang, Y. (2025). Enhancing the Energy Storage Properties and Breakdown Strength of Lead-Free Bismuth-Sodium Titanate-Based Ceramics Through NaNbO3 Doping. Crystals, 15(3), 287. https://doi.org/10.3390/cryst15030287