Improving the Energy Storage Performance of Barium Titanate-Based Ceramics through the Addition of ZnO-Bi2O3-SiO2 Glass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Glass Additive Fabrication
2.2. Sample Preparation
2.3. Characterization
3. Results and Discussion
3.1. Phase Structure
3.2. Microstructure Analysis
3.3. Dielectric Behavior
3.4. Ferroelectric Behavior and Energy Storage Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yao, Z.; Song, Z.; Hao, H.; Yu, Z.; Cao, M.; Zhang, S.; Lanagan, M.T.; Liu, H. Homogeneous/Inhomogeneous-Structured Dielectrics and Their Energy-Storage Performances. Adv. Mater. 2017, 29, 1601727. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, F.; Xu, Z.; Zhang, S. Multilayer Lead-Free Ceramic Capacitors with Ultrahigh Energy Density and Efficiency. Adv. Mater. 2018, 30, 1802155. [Google Scholar] [CrossRef]
- Wang, D.; Fan, Z.; Zhou, D.; Khesro, A.; Murakami, S.; Feteira, A.; Zhao, Q.; Tan, X.; Reaney, I.M. Bismuth Ferrite-Based Lead-Free Ceramics and Multilayers with High Recoverable Energy Density. J. Mater. Chem. A 2018, 6, 4133–4144. [Google Scholar] [CrossRef]
- Li, D.; Guo, Q.; Cao, M.; Yao, Z.; Liu, H.; Hao, H. The Influence of A/B-Sites Doping on Antiferroelectricity of PZO Energy Storage Films. Microstructures 2023, 3, 2023007. [Google Scholar]
- Yan, F.; Qian, J.; Wang, S.; Zhai, J. Progress and Outlook on Lead-Free Ceramics for Energy Storage Applications. Nano Energy 2024, 123, 109394. [Google Scholar] [CrossRef]
- Shen, Z.; Liu, H.; Shen, Y.; Hu, J.; Chen, L.; Nan, C. Machine Learning in Energy Storage Materials. Interdiscip. Mater. 2022, 1, 175–195. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Sun, J.; Zhou, M.; Zhou, H. Novel Lead-Free Ceramic Capacitors with High Energy Density and Fast Discharge Performance. Ceram. Int. 2020, 46, 3426–3432. [Google Scholar] [CrossRef]
- Wei, M.; Zhang, J.; Zhang, M.; Yao, Z.; Chen, H.; Yang, C.; Shen, Z.; Wang, X.; Luo, B.; Li, L.; et al. Dielectric and Energy Storage Properties of the (1−x)BaTiO3-XBi(Li1/3Hf2/3)O3 (0.08 ≤ × ≤ 0.14) Ceramics. Ceram. Int. 2019, 43, 20266–20275. [Google Scholar]
- Li, W.B.; Zhou, D.; Pang, L.X.; Xu, R.; Guo, H.H. Novel Barium Titanate Based Capacitors with High Energy Density and Fast Discharge Performance. J. Mater. Chem. A 2017, 5, 19607–19612. [Google Scholar] [CrossRef]
- Ogihara, H.; Randall, C.A.; Trolier-McKinstry, S. Weakly Coupled Relaxor Behavior of BaTiO3-BiScO3 Ceramics. J. Am. Ceram. Soc. 2009, 92, 110–118. [Google Scholar] [CrossRef]
- Hu, Q.; Tian, Y.; Zhu, Q.; Bian, J.; Jin, L.; Du, H.; Alikin, D.O.; Shur, V.Y.; Feng, Y.; Xu, Z.; et al. Achieve Ultrahigh Energy Storage Performance in BaTiO3–Bi(Mg1/2Ti1/2)O3 Relaxor Ferroelectric Ceramics via Nano-Scale Polarization Mismatch and Reconstruction. Nano Energy 2020, 67, 104264. [Google Scholar] [CrossRef]
- Zhou, M.; Liang, R.; Zhou, Z.; Dong, X. Combining High Energy Efficiency and Fast Charge-Discharge Capability in Novel BaTiO3-Based Relaxor Ferroelectric Ceramic for Energy-Storage. Ceram. Int. 2019, 45, 3582–3590. [Google Scholar] [CrossRef]
- Jiang, X.; Hao, H.; Zhang, S.; Lv, J.; Cao, M.; Yao, Z.; Liu, H. Enhanced Energy Storage and Fast Discharge Properties of BaTiO3 Based Ceramics Modified by Bi(Mg1/2Zr1/2)O3. J. Eur. Ceram. Soc. 2019, 39, 1103–1109. [Google Scholar] [CrossRef]
- Wang, T.; Jin, L.; Li, C.; Hu, Q.; Wei, X. Relaxor Ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 Ceramics for Energy Storage Application. J. Am. Ceram. Soc. 2014, 98, 559–566. [Google Scholar] [CrossRef]
- Wang, Y.; Pu, Y.; Cui, Y.; Shi, Y.; Zheng, H. Enhanced Energy Storage Density of Ba0.4Sr0.6TiO3 Ceramics with Additive of Bi2O3-B2O3-ZnO Glass. Mater. Lett. 2017, 201, 203–206. [Google Scholar] [CrossRef]
- Tunkasiri, T.; Rujijanagul, G. Dielectric Strength of Fine Grained Barium Titanate Ceramics. J. Mater. Sci. Lett. 1996, 15, 1767–1769. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Ma, T.; Li, H.; Zhang, L. Correlation between Dielectric Breakdown Strength and Interface Polarization in Barium Strontium Titanate Glass Ceramics. Appl. Phys. Lett. 2010, 96, 42902. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Song, X.; Yuan, Z.; Ma, T.; Zhang, Q.; Deng, C.; Liang, T. Glass Additive in Barium Titanate Ceramics and Its Influence on Electrical Breakdown Strength in Relation with Energy Storage Properties. J. Eur. Ceram. Soc. 2012, 32, 559–567. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.; Luo, J.; Tang, Q.; Du, J. Improved Energy Storage Density in Barium Strontium Titanate by Addition of BaO–SiO2–B2O3 Glass. J. Am. Ceram. Soc. 2009, 92, 1871–1873. [Google Scholar] [CrossRef]
- Yoon, S.; Kim, K.; Kim, S.; Shim, S.; Park, J. Densification and Dielectric Properties of Glass/Ceramic Composites Sintered with Various Borosilicate Glass. Mater. Sci. Forum 2007, 544–545, 961–964. [Google Scholar] [CrossRef]
- Dong, G.; Ma, S.; Du, J.; Cui, J. Dielectric Properties and Energy Storage Density in ZnO-Doped Ba0.3Sr0.7TiO3 Ceramics. Ceram. Int. 2009, 35, 2069–2075. [Google Scholar] [CrossRef]
- Rhim, S.M.; Hong, S.; Bak, H.; Kim, O.K. Effects of B2O3 Addition on the Dielectric and Ferroelectric Properties of Ba0.7Sr0.3TiO3 Ceramics. J. Am. Ceram. Soc. 2000, 83, 1145–1148. [Google Scholar] [CrossRef]
- Lee, Y.; Lu, W.; Wang, S.; Lin, C. Effect of SiO2 Addition on the Dielectric Properties and Microstructure of BaTiO3-Based Ceramics in Reducing Sintering. Int. J. Miner. Metall. Mater. 2009, 16, 124–127. [Google Scholar] [CrossRef]
- Wu, T.; Pu, Y.; Zong, T.; Gao, P. Microstructures and Dielectric Properties of Ba0.4Sr0.6TiO3 Ceramics with BaO–TiO2–SiO2 Glass–Ceramics Addition. J. Alloys Compd. 2014, 584, 461–465. [Google Scholar] [CrossRef]
- Chen, K.; Pu, Y.; Xu, N.; Luo, X. Effects of SrO–B2O3–SiO2 Glass Additive on Densification and Energy Storage Properties of Ba0.4Sr0.6TiO3 Ceramics. J. Mater. Sci. Mater. Electron. 2012, 23, 1599–1603. [Google Scholar] [CrossRef]
- Zhou, M.; Liang, R.; Zhou, Z.; Dong, X. Novel BaTiO3-Based Lead-Free Ceramic Capacitors Featuring High Energy Storage Density, High Power Density, and Excellent Stability. J. Mater. Chem. C 2018, 6, 8528–8537. [Google Scholar] [CrossRef]
- Hsiang, H.-I.; Hsi, C.S.; Huang, C.-C.; Fu, S. Low Temperature Sintering and Dielectric Properties of BaTiO3 with Glass Addition. Mater. Chem. Phys. 2009, 113, 658–663. [Google Scholar] [CrossRef]
- Filipič, C.; Hemberger, J.; Kutnjak, Z.; Levstik, A.; Loidl, A. Frequency Dependence of Dielectric Nonlinearity in PMN Relaxor System. J. Eur. Ceram. Soc. 2001, 21, 1323–1325. [Google Scholar] [CrossRef]
- Goncharenko, A.V.; Lozovski, V.Z.; Venger, E.F. Lichtenecker’s Equation: Applicability and Limitations. Opt. Commun. 2000, 174, 19–32. [Google Scholar] [CrossRef]
- Kingery, W.D.; Bowen, H.K.; Uhlmann, D.R.; Frieser, R. Introduction to Ceramics. J. Electrochem. Soc. 1977, 124, 152C. [Google Scholar] [CrossRef]
Density (g/cm3) | Softening Point (°C) | Dielectric Constant | Dielectric Loss | Breakdown Strength (kV/cm) |
---|---|---|---|---|
3.001 | ~700 | ~6.3 | 0.001 | 358 |
Sample | Structure | Lattice Parameter (Å) | Volume (Å3) | Theoretical Density (g/cm3) | Bulk Density (g/cm3) | Relative Density (%) |
---|---|---|---|---|---|---|
Z1 | Cubic | 4.0153 | 64.74 | 6.40 | 5.77 | 90.13 |
Z2 | Cubic | 4.0182 | 64.88 | 6.68 | 6.04 | 90.47 |
Z3 | Cubic | 4.0349 | 65.20 | 5.64 | 5.55 | 97.55 |
Z4 | Cubic | 4.0192 | 64.92 | 5.88 | 5.64 | 95.80 |
Z5 | Cubic | 4.0175 | 64.81 | 6.13 | 5.74 | 94.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, P.; Xiao, M.; Yao, Z.; Liu, H.; Hao, H. Improving the Energy Storage Performance of Barium Titanate-Based Ceramics through the Addition of ZnO-Bi2O3-SiO2 Glass. Crystals 2024, 14, 242. https://doi.org/10.3390/cryst14030242
Xiong P, Xiao M, Yao Z, Liu H, Hao H. Improving the Energy Storage Performance of Barium Titanate-Based Ceramics through the Addition of ZnO-Bi2O3-SiO2 Glass. Crystals. 2024; 14(3):242. https://doi.org/10.3390/cryst14030242
Chicago/Turabian StyleXiong, Peifeng, Man Xiao, Zhonghua Yao, Hanxing Liu, and Hua Hao. 2024. "Improving the Energy Storage Performance of Barium Titanate-Based Ceramics through the Addition of ZnO-Bi2O3-SiO2 Glass" Crystals 14, no. 3: 242. https://doi.org/10.3390/cryst14030242