New Co-Crystals of Betaine: Significant Improvements in Hygroscopicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Crystallization
2.2.1. BET-2,4-DHB
2.2.2. BET-3,5-DHB
2.2.3. BET-3-HDB
2.3. SCXRD
2.4. PXRD
2.5. IR
2.6. DSC and TG
2.7. DVS
2.8. Theoretical Calculation
3. Results and Discussion
3.1. SCXRD Analysis
3.2. PXRD Analysis
3.3. IR Analysis
3.4. Thermal Analysis
3.5. Hirshfeld Surface and 3D Energy Frameworks
3.6. Hygroscopicity Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arumugam, M.K.; Paal, M.C.; Donohue, T.M.J.; Ganesan, M.; Osna, N.A.; Kharbanda, K.K. Beneficial effects of betaine: A comprehensive review. Biology 2021, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R.; Ratamess, N.A.; Kang, J.; Rashti, S.L.; Faigenbaum, A.D. Effect of betaine supplementation on power performance and fatigue. Int. Soc. Sports Nutr. 2009, 6, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Willingham, B.D.; Ragland, T.J.; Ormsbee, M.J. Betaine Supplementation May Improve Heat Tolerance: Potential Mechanisms in Humans. Nutrients 2020, 12, 2939. [Google Scholar] [CrossRef] [PubMed]
- Pukale, D.D.; Lazarenko, D.; Aryal, S.R.; Khabaz, F.; Shriver, L.P.; Leipzig, N.D. Osmotic contribution of synthesized betaine by choline dehydrogenase using in vivo and in vitro models of post-traumatic syringomyelia. Cell. Mol. Bioeng. 2023, 16, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Pukale, D.D.; Farrag, M.; Gudneppanavar, R.; Baumann, H.J.; Konopka, M.; Shriver, L.P.; Leipzig, N.D. Osmoregulatory role of Betaine and Betaine/γ-Aminobutyric acid transporter 1 in post-traumatic Syringomyelia. ACS Chem. Neurosci. 2021, 12, 3567–3578. [Google Scholar] [CrossRef]
- Lawson-Yuen, A. and Levy H L. The use of betaine in the treatment of elevated homocysteine. Mol. Genet. Metab. 2006, 88, 201–207. [Google Scholar] [CrossRef]
- Truitt, C.; Hoff, W.D.; Deole, R. Health functionalities of betaine in patients with homocystinuria. Front. Nutr. 2021, 8, 690359. [Google Scholar] [CrossRef]
- Kumar, T.; Sharma, G.S.; Singh, L.R. Homocystinuria: Therapeutic approach. Clin. Chim. Acta 2016, 458, 55–62. [Google Scholar] [CrossRef]
- Al Mutairi, F. Hyperhomocysteinemia: Clinical insights. J. Cent. Nerv. Syst. Dis. 2020, 12, 1179573520962230. [Google Scholar] [CrossRef]
- Imbard, A.; Toumazi, A.; Magréault, S.; Garcia-Segarra, N.; Schlemmer, D.; Kaguelidou, F.; Perronneau, I.; Haignere, J.; de Baulny, H.O.; Kuster, A.; et al. Efficacy and pharmacokinetics of betaine in CBS and cblC deficiencies: A cross-over randomized controlled trial. Orphanet J. Rare Dis. 2022, 17, 417. [Google Scholar] [CrossRef]
- Hossain, M.A.; Boily, S.; Beauregard, N.; Forest, J.M.; Leclair, G. Stability of Betaine Capsules. Int. Sch. Res. Not. 2013, 2013, 458625. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S. Role of betaine in liver disease-worth revisiting or has the die been cast. World J. Gastroenterol. 2020, 26, 5745. [Google Scholar] [CrossRef] [PubMed]
- Kharbanda, K.K. Role of transmethylation reactions in alcoholic liver disease. World J. Gastroenterol. 2007, 13, 4947–4954. [Google Scholar] [CrossRef] [PubMed]
- Singhal, N.K.; Sternbach, S.; Fleming, S.; Alkhayer, K.; Shelestak, J.; Popescu, D.; Weaver, A.; Clements, R.; Wasek, B.; Bottiglieri, T.; et al. Betaine restores epigenetic control and supports neuronal mitochondria in the cuprizone mouse model of multiple sclerosis. Epigenetics 2020, 15, 871–886. [Google Scholar] [CrossRef]
- Bhatt, M.; Di Iacovo, A.; Romanazzi, T.; Roseti, C.; Bossi, E. Betaine—The dark knight of the brain. Basic Clin. Pharmacol. Toxicol. 2023, 133, 485–495. [Google Scholar] [CrossRef]
- Golzarand, M.; Mirmiran, P.; Azizi, F. Association between dietary choline and betaine intake and 10.6-year cardiovascular disease in adults. Nutr. J. 2022, 21, 1. [Google Scholar] [CrossRef]
- Ashtary-Larky, D.; Bagheri, R.; Ghanavati, M.; Asbaghi, O.; Tinsley, G.M.; Mombaini, D.; Kooti, W.; Kashkooli, S.; Wong, A. Effects of betaine supplementation on cardiovascular markers: A systematic review and Meta-analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 6516–6533. [Google Scholar] [CrossRef]
- Alvarenga, L.; Ferreira, M.S.; Kemp, J.A.; Mafra, D. The role of betaine in patients with chronic kidney disease: A narrative review. Curr. Nutr. Rep. 2022, 11, 395–406. [Google Scholar] [CrossRef]
- Zawieja, E.E.; Zawieja, B.; Chmurzynska, A. Betaine supplementation moderately increases total cholesterol levels: A systematic review and meta-analysis. J. Diet. Suppl. 2021, 18, 105–117. [Google Scholar] [CrossRef]
- Du, J.; Shen, L.; Tan, Z.; Zhang, P.; Zhao, X.; Xu, Y.; Gan, M.; Yang, Q.; Ma, J.; Jiang, A.; et al. Betaine Supplementation Enhances Lipid Metabolism and Improves Insulin Resistance in Mice Fed a High-Fat Diet. Nutrients 2018, 10, 131. [Google Scholar] [CrossRef]
- Olli, K.; Lahtinen, S.; Rautonen, N.; Tiihonen, K. Betaine reduces the expression of inflammatory adipokines caused by hypoxia in human adipocytes. Br. J. Nutr. 2013, 109, 43–49. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, M.J.; Heckelman, P.E.; Koch, C.B.; Roman, K.J. (Eds.) The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals; Merck & Co.: Rahway, NJ, USA, 2006. [Google Scholar]
- Tereshchenko, A.G. Deliquescence: Hygroscopicity of water-soluble crystalline solids. J. Pharm. Sci. 2015, 104, 3639–3652. [Google Scholar] [CrossRef] [PubMed]
- Reutzel-Edens, S.M.; Braun, D.E.; Newman, A.W. Hygroscopicity and Hydrates in Pharmaceutical Solids. In Polymorphism in the Pharmaceutical Industry: Solid Form and Drug Development; Wiley: Hoboken, NJ, USA, 2018; pp. 159–188. [Google Scholar]
- Thakur, T.S.; Thakuria, R. Crystalline multicomponent solids: An alternative for addressing the hygroscopicity issue in pharmaceutical materials. Cryst. Growth Des. 2020, 20, 6245–6265. [Google Scholar] [CrossRef]
- Anbarasan, A.; Nataraj, J.; Shanmukhan, N.; Radhakrishnan, A. Effect of hygroscopicity on pharmaceutical ingredients, methods to determine and overcome: An overview. J. Chem. Pharm. Res. 2018, 10, 61–67. [Google Scholar]
- Chang, S.Y.; Sun, C.C. Superior Plasticity and Tabletability of Theophylline Monohydrate. Mol. Pharm. 2017, 14, 2047–2055. [Google Scholar] [CrossRef]
- Newman, A.W.; Reutzel-Edens, S.M.; Zografi, G. Characterization of the "hygroscopic" properties of active pharmaceutical ingredients. J. Pharm. Sci. 2008, 97, 1047–1059. [Google Scholar] [CrossRef]
- Liu, F.; Hooks, D.E.; Li, N.; Mara, N.A.; Swift, J.A. Mechanical Properties of Anhydrous and Hydrated Uric Acid Crystals. Chem. Mater. 2018, 30, 3798–3805. [Google Scholar] [CrossRef]
- Duggirala, N.K.; Vyas, A.; Krzyzaniak, J.F.; Arora, K.K.; Suryanarayanan, R. Mechanistic Insight into Caffeine–Oxalic Co-crystal Dissociation in Formulations: Role of Excipients. Mol. Pharm. 2017, 14, 3879–3887. [Google Scholar] [CrossRef]
- Koranne, S.; Sahoo, A.; Krzyzaniak, J.F.; Luthra, S.; Arora, K.K.; Suryanarayanan, R. Challenges in Transitioning Co-crystals from Bench to Bedside: Dissociation in Prototype Drug Product Environment. Mol. Pharm. 2018, 15, 3297–3307. [Google Scholar] [CrossRef]
- Kaur, N.; Duggirala, N.K.; Thakral, S.; Suryanarayanan, R. Role of Lattice Disorder in Water-Mediated Dissociation of Pharmaceutical Co-crystal Systems. Mol. Pharm. 2019, 16, 3167–3177. [Google Scholar] [CrossRef]
- Pudipeddi, M.; Serajuddin, A.T.M. Trends in Solubility of Polymorphs. J. Pharm. Sci. 2005, 94, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Rohrs, B.R.; Thamann, T.J.; Gao, P.; Stelzer, D.J.; Bergren, M.S.; Chao, R.S. Tablet Dissolution Affected by a Moisture Mediated Solid-State Interaction Between Drug and Disintegrant. Pharm. Res. 1999, 16, 1850–1856. [Google Scholar] [CrossRef] [PubMed]
- Balbach, S.; Korn, C. Pharmaceutical evaluation of early development candidates “the 100 mgapproach”. Int. J. Pharm. 2004, 275, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kale, D.P.; Ugale, B.; Nagaraja, C.M.; Dubey, G.; Bharatam, P.V.; Bansal, A.K. Molecular Basis of Water Sorption Behavior of Rivaroxaban-Malonic Acid Co-crystal. Mol. Pharm. 2019, 16, 2980–2991. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Sun, X.; Chen, J.; Cai, T. Pharmaceutical co-crystals: A review of preparations, physicochemical properties and applications. Acta Pharm. Sin. B 2021, 11, 2537–2564. [Google Scholar] [CrossRef]
- Kuminek, G.; Cao, F.; de Oliveira da Rocha, A.B.; Cardoso, S.G.; Rodríguez-Hornedo, N. Co-crystals to Facilitate Delivery of Poorly Soluble Compounds Beyond-Rule-of-5. Adv. Drug Deliv. Rev. 2016, 101, 143–166. [Google Scholar] [CrossRef]
- Berry, D.J.; Steed, J.W. Pharmaceutical Co-crystals, Salts and Multicomponent Systems; Intermolecular Interactions and Property Based Design. Adv. Drug Deliv. Rev. 2017, 117, 3–24. [Google Scholar] [CrossRef]
- Watanabe, T.; Ito, M.; Suzuki, H.; Terada, K.; Noguchi, S. Reduced deliquescency of isosorbide by co-crystallization and mechanisms for hygroscopicity. Int. J. Pharm. 2021, 607, 120959. [Google Scholar] [CrossRef]
- Sun, J.; Jia, L.; Wang, M.; Liu, Y.; Li, M.; Han, D.; Gong, J. Novel drug-drug multicomponent crystals of epalrestat–metformin: Improved solubility and photostability of epalrestat and reduced hygroscopicity of metformin. Crystal Growth and Design. 2022, 22, 1005–1016. [Google Scholar] [CrossRef]
- Puschmann, H.; Bourhis, L.J.; Dolomanov, O.V.; Gildea, R.J.; Howard, J.A. OLEX2-a complete package for molecular crystallography. Acta Crystallogr. A 2011, 67, C593. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2, Teaching New Software Old And New Tricks. J. Appl. Crystallogr. 2019, 42, 339–341. [Google Scholar] [CrossRef]
- Lübben, J.; Wandtke, C.M.; Hübschle, C.B.; Ruf, M.; Sheldrick, G.M.; Dittrich, B. Aspherical scattering factors for SHELXL–model, implementation and application. Acta Crystallogr. Sect. A Found. Crystallogr. 2019, 75, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towlera, M.; et al. Mercury: Visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453–457. [Google Scholar] [CrossRef]
- An, Q.; Xing, C.; Wang, Z.P.; Li, S.; Wang, W.; Yang, S.; Kong, L.L.; Yang, D.Z.; Zhang, L.; Du, G.H.; et al. Metformin-Mediated Improvement in Solubility, Stability, and Permeability of Nonsteroidal Anti-Inffammatory Drugs. Pharmaceutics 2024, 29, 2208. [Google Scholar]
- Wang, Z.P.; Li, S.; Li, Q.; Wang, W.W.; Liu, M.J.; Yang, S.Y.; Zhang, L.; Yang, D.Z.; Du, G.H.; Lu, Y. A Novel Co-crystal of Daidzein with Piperazine to Optimize the Solubility, Permeability and Bioavailability of Daidzein. Molecules 2024, 29, 1710. [Google Scholar] [CrossRef]
- Allen, F.H.; Bruno, I.J. Bond lengths in organic and metal-organic compounds revisited: X—H bond lengths from neutron diffraction data. Acta Crystallogr. Sect. B Struct. Sci. 2010, 66, 380–386. [Google Scholar] [CrossRef]
- Li, J.; Sun, J. Application of X-ray Diffraction and Electron Crystallography for Solving Complex Structure Problems. Acc. Chem. Res. 2017, 50, 2737–2745. [Google Scholar] [CrossRef]
- Munjal, B.; Suryanarayanan, R. Applications of synchrotron powder X-ray diffractometry in drug substance and drug product characterization. TrAC Trends Anal. Chem. 2021, 136, 116181. [Google Scholar] [CrossRef]
- Bunaciu, A.A.; Udriştioiu, E.G.; Aboul-Enein, H.Y. X-ray diffraction: Instrumentation and applications. Crit. Rev. Anal Chem. 2015, 45, 289–299. [Google Scholar] [CrossRef]
- Garbacz, P.; Paukszta, D.; Sikorski, A.; Wesolowski, M. Structural characterization of co-crystals of chlordiazepoxide with p-aminobenzoic acid and lorazepam with nicotinamide by dsc, X-ray diffraction, ftir and raman spectroscopy. Pharmaceutics 2020, 12, 648. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, F.; Zhao, X.; Wang, S.; Yang, Q.; Zhang, X. Crystal structure, solubility, and pharmacokinetic study on a hesperetin co-crystal with piperine as coformer. Pharmaceutics 2022, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- McKinnon, J.J.; Fabbiani, F.P.A.; Spackman, M.A. Comparison of Polymorphic Molecular Crystal Structures through Hirshfeld Surface Analysis. Cryst. Growth Des. 2007, 7, 755–769. [Google Scholar] [CrossRef]
Co-Crystals | |||
---|---|---|---|
Formula | BET-2,4-DHB (1:1) | BET-3,5-DHB (1:1) | BET-3-HDB (1:1) |
Space group | P21/c | P21/c | Pca21 |
a (Å) | 8.218 (1) | 6.666 (1) | 14.588 (1) |
b (Å) | 13.008 (1) | 15.027 (1) | 9.509 (1) |
c (Å) | 12.769 (2) | 13.424 (1) | 9.073 (1) |
α (deg) | 90 | 90 | 90 |
β (deg) | 103.603 (4) | 97.451 (2) | 90 |
γ (deg) | 90 | 90 | 90 |
volume (Å3) | 1326.73 (8) | 1333.28 (5) | 1258.52 (4) |
Z | 4 | 4 | 4 |
density (g/cm3) | 1.358 | 1.351 | 1.347 |
R1 (I > 2σ(I)) | 0.0476 | 0.0476 | 0.0256 |
wR2 (I > 3σ(I)) | 0.1327 | 0.1327 | 0.0678 |
CCDC deposition no. | 2,383,209 | 2,383,213 | 2,383,478 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Li, S.; Wang, Z.; Yang, S.; Xie, Y.; Yang, D.; Zhang, L.; Lu, Y. New Co-Crystals of Betaine: Significant Improvements in Hygroscopicity. Crystals 2024, 14, 917. https://doi.org/10.3390/cryst14110917
Li Q, Li S, Wang Z, Yang S, Xie Y, Yang D, Zhang L, Lu Y. New Co-Crystals of Betaine: Significant Improvements in Hygroscopicity. Crystals. 2024; 14(11):917. https://doi.org/10.3390/cryst14110917
Chicago/Turabian StyleLi, Qi, Shuang Li, Zhipeng Wang, Shiying Yang, Yifei Xie, Dezhi Yang, Li Zhang, and Yang Lu. 2024. "New Co-Crystals of Betaine: Significant Improvements in Hygroscopicity" Crystals 14, no. 11: 917. https://doi.org/10.3390/cryst14110917
APA StyleLi, Q., Li, S., Wang, Z., Yang, S., Xie, Y., Yang, D., Zhang, L., & Lu, Y. (2024). New Co-Crystals of Betaine: Significant Improvements in Hygroscopicity. Crystals, 14(11), 917. https://doi.org/10.3390/cryst14110917