Supramolecular Assemblies in Pyridine- and Pyrazole-Based Coordination Compounds of Co(II) and Ni(II): Characterization, Hirshfeld Analysis and Theoretical Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Syntheses
2.1.1. Synthesis of [Ni(H2O)5(DMAP)](IPhth)·2H2O (1)
2.1.2. Synthesis of [Co(Hdmpz)4(H2O)2]Cl2 (2)
2.2. Crystallographic Data Collection and Refinement
2.3. Computational Methods
2.3.1. Theoretical Study
2.3.2. Hirshfeld Analysis
3. Results and Discussion
3.1. Syntheses and General Aspects
3.2. Crystal Structure Analysis
3.3. Spectral Studies
3.3.1. FT-IR Spectroscopy
3.3.2. Electronic Spectroscopy
3.4. Thermogravimetric Analysis
3.5. Computational Studies
3.5.1. Hirshfeld Study
3.5.2. Theoretical Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Desiraju, G.R. Crystal engineering: A holistic view. Angew. Chem. Int. Ed. 2007, 46, 8342–8356. [Google Scholar] [CrossRef]
- Gu, J.; Wen, M.; Cai, Y.; Shi, Z.; Nesterov, D.S.; Kirillova, M.V.; Kirillov, A.M. Cobalt(II) coordination polymers assembled from unexplored pyridine-carboxylic acids: Structural diversity and catalytic oxidation of alcohols. Inorg. Chem. 2019, 58, 5875–5885. [Google Scholar] [CrossRef]
- Tang, L.; Tang, L.; Wang, D.; Deng, H.; Chen, K. Metal and ligand effects on the stability and electronic properties of crystalline two-dimensional metal-benzenehexathiolate coordination compounds. J. Phys. Condens. Matter 2018, 30, 465301–465311. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, L.H.; Abdelhamid, A.A.; Abu-Dief, A.M.; Shehata, M.R.; Bakheeta, A.R. Facile synthesis, X-Ray structure of new multi-substituted aryl imidazole ligand, biological screening and DNA binding of its Cr(III), Fe(III) and Cu(II) coordination compounds as potential antibiotic and anticancer drugs. J. Mol. Struct. 2020, 1200, 127034–127040. [Google Scholar] [CrossRef]
- Adam, R.; Mon, M.; Greco, R.; Kalinke, L.H.A.; Vidal-Moya, A.; Fernandez, A.; Winpenny, R.E.P.; Domenech-Carbo, A.; Leyva-Perez, A.; Armentano, D.; et al. Self-assembly of catalytically active supramolecular coordination compounds within metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 10350–10360. [Google Scholar] [CrossRef]
- Gu, J.; Cai, Y.; Liang, X.; Wu, J.; Shi, Z.; Kirillov, A.M. Bringing 5-(3,4-dicarboxylphenyl)picolinic acid to crystal engineering research: Hydrothermal assembly, structural features and photocatalytic activity of Mn, Ni, Cu, and Zn coordination polymers. CrystEngComm 2018, 20, 906–916. [Google Scholar] [CrossRef]
- Stahly, G.P. A survey of co-crystals reported prior to 2000. Cryst. Growth Des. 2009, 9, 4212–4229. [Google Scholar] [CrossRef]
- Abidi, S.S.A.; Garg, U.; Azim, Y.; Alam, M.; Gupta, A.K.; Pradeep, C.P.; Azum, N.; Asiri, A.M. Spectroscopic, structural, DFT and molecular docking studies on novel cocrystal salt hydrate of chromotropic acid and its antibiofilm activity. Arab. J. Sci. Eng. 2021, 46, 353–364. [Google Scholar] [CrossRef]
- Ilmi, R.; Al-busaidi, I.J.; Haque, A.; Khan, M.S. Recent progress in coordination chemistry, photo-physical properties, and applications of pyridine-based Cu(I) complexes. J. Coord. Chem. 2018, 21, 3045–3076. [Google Scholar] [CrossRef]
- Shi, L.; Ding, P.; Wang, Y.; Zhang, Y.; Ossipov, D.; Hilborn, J. Self-healing polymeric hydrogel formed by metal-ligand coordination assembly: Design, fabrication, and biomedical applications. Macromol. Rapid Commun. 2019, 40, 1800837–1800852. [Google Scholar] [CrossRef]
- Mogensen, S.B.; Taylor, M.K.; Lee, J. Homocoupling reactions of azoles and their applications in coordination chemistry. Molecules 2020, 25, 5950. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.L.M.; Silva, A.M.S. Recent advances in the synthesis, functionalization and applications of pyrazole-type compounds. Molecules 2021, 26, 4989. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, L.H.; Abu-Dief, A.M.; Atlam, F.M.; Abdel-Mawgoud, A.A.; Alothman, A.A.; Alsalm, A.M. Chemical, physical, and biological properties of Pd(II), V(IV)O, and Ag(I) complexes of N3 tridentate pyridine-based Schiff base ligand. J. Coord. Chem. 2020, 73, 3150–3173. [Google Scholar] [CrossRef]
- Sarma, P.; Sharma, P.; Gomila, R.M.; Frontera, A.; Barcelo-Oliver, M.; Verma, A.K.; Baruwa, B.; Bhattacharyya, M.K. Charge assisted hydrogen bonded assemblies and unconventional O∙∙∙O dichalcogen bonding interactions in pyrazole-based isostructural Ni(II) and Mn(II) compounds involving anthraquinonedisulfonate: Antiproliferative evaluation and theoretical studies. J. Mol. Struct. 2022, 1250, 131883–131897. [Google Scholar] [CrossRef]
- Danilescu, O.; Bulhac, I.; Shova, S.; Novitchi, G.; Bourosh, P. Coordination compounds of copper(II) with schiff bases based on aromatic carbonyl compounds and hydrazides of carboxylic acids: Synthesis, structures, and properties. Russ. J. Coord. Chem. 2020, 46, 838–849. [Google Scholar] [CrossRef]
- Gu, J.; Wan, S.; Kirillova, M.V.; Kirillov, A.M. H-Bonded and metal(II)-organic architectures assembled from an unexplored aromatic tricarboxylic acid: Structural variety and functional properties. Dalton Trans. 2020, 49, 7197–7209. [Google Scholar] [CrossRef]
- García-Valdivia, A.A.; Jannus, F.; García-García, A.; Choquesillo-Lazarte, D.; Fernández, B.; Medina-O’Donnell, M.; Lupiáñez, J.A.; Cepeda, J.; Reyes-Zurita, F.J.; Rodríguez-Diéguez, A. Anti-cancer and anti-inflammatory activities of a new family of coordination compounds based on divalent transition metal ions and indazole-3-carboxylic acid. J. Inorg. Biochem. 2021, 215, 111308–111320. [Google Scholar] [CrossRef]
- Shamim, S.; Gul, S.; Rauf, A.; Rashid, U.; Khan, A.; Amin, R.; Akhtar, F. Gemifloxacin-transition metal complexes as therapeutic candidates: Antimicrobial, antifungal, anti-enzymatic, and docking studies of newly synthesized complexes. Heliyon 2022, 8, 10378–10386. [Google Scholar] [CrossRef]
- Scheiner, S. Non-Covalent Forces; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Maharramov, A.M.; Mahmudov, M.T.; Kopylovich, M.N.; Pombeiro, A.J.L. Non-Covalent Interactions in the Synthesis and Design of New Compounds; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Desiraju, G.R. Chemistry beyond the molecule. Nature 2001, 412, 397–400. [Google Scholar] [CrossRef]
- Crabtree, R.H. Hypervalency, secondary bonding and hydrogen bonding: Siblings under the skin. Chem. Soc. Rev. 2017, 46, 1720–1729. [Google Scholar] [CrossRef] [PubMed]
- Mundlapati, V.R.; Sahoo, D.K.; Bhaumik, S.; Jena, S.; Chandrakar, A.; Biswal, H.S. Non-covalent carbon-bonding interactions in proteins. Angew. Chem. Int. Ed. 2018, 57, 16496–16500. [Google Scholar] [CrossRef] [PubMed]
- Steed, J.W.; Atwood, J.L. Supramolecular Chemistry, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2009. [Google Scholar]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge structural database. Acta Cryst. B 2016, 72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Nath, H.; Sharma, P.; Frontera, A.; Barcelo-Oliver, M.; Verma, A.K.; Das, J.; Bhattacharyya, M.K. Phenanthroline-based Ni(II) coordination compounds involving unconventional discrete fumarate-water-nitrate clusters and energetically significant cooperative ternary π-stacked assemblies: Antiproliferative evaluation and theoretical studies. J. Mol. Struct. 2022, 1248, 131424–131436. [Google Scholar] [CrossRef]
- Sharma, P.; Dutta, D.; Gomila, R.M.; Frontera, A.; Barcelo-Oliver, M.; Verma, A.K.; Bhattacharyya, M.K. Benzoato bridged dinuclear Mn(II) and Cu(II) compounds involving guest chlorobenzoates and dimeric paddle wheel supramolecular assemblies: Antiproliferative evaluation and theoretical studies. Polyhedron 2021, 208, 115409–115425. [Google Scholar] [CrossRef]
- Bruker. APEX3 User Manual; Bruker AXS Inc.: Madison, WI, USA, 2015. [Google Scholar]
- Bruker. SADABS, V2.05; Bruker AXS Inc.: Madison, WI, USA, 1999. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 1999, 32, 837–838. [Google Scholar] [CrossRef]
- Brandenburg, K. Diamond 3.1f; Crystal Impact GbR: Bonn, Germany, 2008. [Google Scholar]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104–154119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Ahlrichs, R.; Bar, M.; Hacer, M.; Horn, H.; Kömel, C. Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett. 1989, 162, 165–169. [Google Scholar] [CrossRef]
- Contreras-Garcia, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.P.; Beratan, D.N.; Yang, W. NCIPLOT: A program for plotting non-covalent interaction regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in molecules. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Humphrey, J.W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Spackman, M.A.; Mitchel, A.S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. 2004, B60, 627–668. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Spackman, M.A. Molecular electric moments from X-ray diffraction data. Chem. Rev. 1992, 92, 1769–1797. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Cryst. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
- Bora, S.J.; Das, B.K. Synthesis, structure and properties of a fumarate bridged Ni(II) coordination polymer. J. Mol. Struct. 2011, 999, 83–88. [Google Scholar] [CrossRef]
- Gogoi, A.; Islam, S.M.N.; Frontera, A.; Bhattacharyya, M.K. Supramolecular association in Cu(II) and Co(II) coordination complexes of 3,5-dimethylpyrazole: Experimental and theoretical studies. Inorg. Chim. Acta 2019, 484, 133–141. [Google Scholar] [CrossRef]
- Bhattacharyya, M.K.; Devi, P.G.; Dasgupta, D.; Bora, S.J.; Das, B.K. Solid and solution structures and DNA binding properties of [MII(4-CNpy)2(SO4)(H2O)3]·H2O for M = Cu, Co, Ni. Polyhedron 2012, 35, 62–68. [Google Scholar] [CrossRef]
- Sharma, P.; Sarma, P.; Frontera, A.; Barceló-Oliver, M.; Verma, A.K.; Sarma, B.; Barthakur, T.; Bhattacharyya, M.K. Energetically significant cooperative π-stacked ternary assemblies in Ni(II) phenanthroline compounds involving discrete water clusters: Anticancer activities and theoretical studies. J. Mol. Struct. 2021, 1229, 129486–129499. [Google Scholar] [CrossRef]
- Das, A.; Choudhury, S.R.; Estarellas, C.; Dey, B.; Frontera, A.; Hemming, J.; Helliwell, H.; Gamez, P.; Mukhopadhyay, S. Supramolecular assemblies involving anion-π and lone pair-π interactions: Experimental observation and theoretical analysis. CrystEngComm 2011, 13, 4519–4527. [Google Scholar] [CrossRef]
- Janiak, C. A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc. Dalton Trans. 2000, 21, 3885–3896. [Google Scholar] [CrossRef]
- Yakovleva, M.A.; Andreeva, A.A.; Nefedov, S.E. Synthesis and structure of the pyrazolate-bridged cobalt(II) benzoate Co2(μ-dmpz)2(Hdmpz)2(OOCPh)2. Russ. J. Inorg. Chem. 2010, 55, 9–21. [Google Scholar] [CrossRef]
- Dutta, D.; Sharma, P.; Gomila, R.M.; Frontera, A.; Barcelo-Oliver, M.; Verma, A.K.; Baishya, T.; Bhattacharyya, M.K. Supramolecular assemblies involving unconventional non-covalent contacts in pyrazole-based coordination compounds of Co(II) and Cu(II) pyridinedicarboxylates: Antiproliferative evaluation and theoretical studies. Polyhedron 2022, 224, 116025–116238. [Google Scholar] [CrossRef]
- Sharma, R.P.; Saini, A.; Kumar, J.; Kumar, S.; Venugopalan, P.; Ferretti, V. Coordination complexes of copper(II) with herbicide-trichlorophenoxyacetate: Syntheses, characterization, single crystal X-ray structure and packing analyses of monomeric [Cu(γ-pic)3(2,4,5-trichlorophenoxyacetate)]·H2O, [trans-Cu(en)2(2,4,5-trichlorophenoxyacetate)2]·2H2O and dimeric [Cu2(H2tea)2(2,4,5-trichlorophenoxyacetate)2]·2H2O. Inorg. Chim. Acta 2017, 457, 59–68. [Google Scholar]
- Manna, S.C.; Mistri, S.; Jana, A.D. A rare supramolecular assembly involving ion pairs of coordination complexes with a host–guest relationship: Synthesis, crystal structure, photoluminescence and thermal study. CrystEngComm 2012, 14, 7415–7422. [Google Scholar] [CrossRef]
- Murinzi, T.W.; Hosten, E.; Watkins, G.M. Synthesis and characterization of a cobalt-2,6-pyridinedicarboxylate MOF with potential application in electrochemical sensing. Polyhedron 2017, 137, 188–196. [Google Scholar] [CrossRef]
- Dunstan, P.O.; Khan, A.M. Thermochemical study of 4-(dimethylamino)pyridine complexes of some bivalent metal bromides. J. Chem. Thermodyn. 2013, 66, 44–49. [Google Scholar] [CrossRef]
- Heine, M.; Fink, L.; Schmidt, M.U. 4-Cyanopyridine complexes [MX2(4-CNpy)x]n (with X = Cl, Br and x = 1, 2): Crystal structures, thermal properties and a comparison with [MX2(3-CNpy)x]n complexes. CrystEngComm 2020, 22, 2067–2082. [Google Scholar] [CrossRef]
- Fuhrmann, H.; Brenner, D.; Arndt, P. Octahedral group 4 metal complexes that contain amine, amido, and aminopyridinato ligands: Synthesis, structure, and application in α-olefin oligo-and polymerization. Inorg. Chem. 1996, 35, 6742–6745. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Islam, S.M.N.; Saha, U.; Chetry, S.; Guha, A.K.; Bhattacharyya, M.K. Structural topology of weak non-covalent interactions in a layered supramolecular coordination solid of zinc involving 3-aminopyridine and benzoate: Experimental and theoretical studies. J. Chem. Crystallogr. 2018, 48, 156–163. [Google Scholar] [CrossRef]
- Li, J.; Xing, Y.H.; Zhao, H.Y.; Li, Z.P.; Wang, Z.P.; Zeng, X.Q.; Ge, M.F.; Niu, S.Y. Constructions of a set of hydrogen-bonded supramolecules from reactions of transition metals with 3,5-dimethylpyrazole and different dicarboxylate ligands. Inorg. Chim. Acta 2009, 362, 2788–2795. [Google Scholar] [CrossRef]
- Titi, A.; Shiga, T.; Oshio, H.; Touzani, R.; Hammouti, B.; Mouslim, F.; Warad, I. Synthesis of novel Cl2Co4L6 cluster using 1-hydroxymethyl-3,5-dimethylpyrazole (LH) ligand: Crystal structure, spectral, thermal, Hirschfeld surface analysis and catalytic oxidation evaluation. J. Mol. Struct. 2020, 1199, 126995–127006. [Google Scholar] [CrossRef]
- Direm, A.; Tursun, M.; Parlak, C.; Cherif, N.B. Trans-dichlorotetrakis (1H-pyrazole-κN2) copper(II): Synthesis, crystal structure, hydrogen bonding graph-sets, vibrational and DFT studies. J. Mol. Struct. 2015, 1093, 208–218. [Google Scholar] [CrossRef]
- Mautner, F.A.; Scherzer, M.; Berger, C.; Fischer, C.R.; Vicente, R.; Massoud, S.S. Synthesis and characterization of five new thiocyanato-and cyanato-metal(II) complexes with 4-azidopyridine as co-ligand. Polyhedron 2015, 85, 20–26. [Google Scholar] [CrossRef]
- Bhattacharyya, M.K.; Dutta, D.; Islam, S.M.N.; Frontera, A.; Sharma, P.; Verma, A.K.; Das, A. Energetically significant antiparallel π-stacking contacts in Co(II), Ni(II) and Cu(II) coordination solids of pyridine-2,6-dicarboxylates: Antiproliferative evaluation and theoretical studies. Inorg. Chim. Acta 2020, 501, 119233–119245. [Google Scholar] [CrossRef]
- Basumatary, D.; Lal, R.A.; Kumar, A. Synthesis, and characterization of low- and high-spin manganese(II) complexes of polyfunctionaladipoyldihydrazone: Effect of coordination of N-donor ligands on stereo-redox chemistry. J. Mol. Struct. 2015, 1092, 122–129. [Google Scholar] [CrossRef]
- Mandal, T.; Dey, A.; Pathak, S.; Islam, M.; Konar, S.; Ortega-Castro, J.; Seth, S.K.; Ray, S.; Frontera, A.; Mukhopadhyay, S. Structures, photoresponse properties and DNA binding abilities of 4-(4-pyridinyl)-2-pyridone salts. RSCAdv. 2019, 9, 9663–9677. [Google Scholar] [CrossRef] [Green Version]
- Jian, F.; Zheng, J.; Zhao, P.; Li, Y.F. Synthesis, characterization and density functional calculations on dichloro-bis(4-dimethylaminopyridine) cobalt(II) complex [Co(II)(C7H10N2)2Cl2]. J. Coord. Chem. 2008, 61, 705–714. [Google Scholar] [CrossRef]
- Du, M.; Zhang, Z.; You, Y.; Zhao, X. R-Isophthalate (R = –H, –NO2 and –COOH) as modular building blocks for mixed-ligand coordination polymers incorporated with a versatile connector 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole. CrystEngComm 2008, 10, 306–321. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, S.; Gao, S. Two Mn(II) chloride complexes containing guest molecules. J. Therm. Anal. Calorim. 2007, 89, 567–571. [Google Scholar] [CrossRef]
- Refat, M.S.; El-deen, I.M.; Anwer, Z.M.; El-ghol, S. Bivalent transition metal complexes of coumarin-3-yl thiosemicarbazone derivatives: Spectroscopic, antibacterial activity and thermogravimetric studies. J. Mol. Struct. 2009, 920, 149–162. [Google Scholar] [CrossRef]
- Gogoi, A.; Das, A.; Frontera, A.; Verma, A.K.; Bhattacharyya, M.K. Energetically significant unconventional π-π contacts involving fumarate in a novel coordination polymer of Zn(II): In-vitro anticancer evaluation and theoretical studies. Inorg. Chim. Acta 2019, 493, 1–13. [Google Scholar] [CrossRef]
- Vener, M.V.; Egorova, A.N.; Churakov, A.V.; Tsirelson, V.G. Intermolecular hydrogen bond energies in crystals evaluated using electron density properties: DFT computations with periodic boundary conditions. J. Comput. Chem. 2012, 33, 2303–2309. [Google Scholar] [CrossRef]
Parameters | 1 | 2 |
---|---|---|
Formula | C15H28N2NiO11 | C20H36Cl2CoN8O2 |
Formula weight | 471.10 | 550.40 |
Temp, (K) | 151 | 100.0 |
Crystal system | Triclinic | Monoclinic |
Space group | P | C2/c |
a, (Å) | 7.073(4) | 10.4681(7) |
b, (Å) | 11.591(6) | 14.1306(10) |
c, (Å) | 12.804(7) | 18.4697(13) |
α, (°) | 83.465(19) | 90 |
β, (°) | 84.37(2) | 92.765(3) |
γ, (°) | 78.857(18) | 90 |
V, (Å3) | 1020.0(9) | 2728.9(3) |
Z | 2 | 4 |
Absorption coefficient (mm−1) | 1.925 | 6.991 |
F(0 0 0) | 496.0 | 1156.0 |
ρcalcg/cm3 | 1.524 | 1.340 |
index ranges | −8 ≤ h ≤ 8 | −12 ≤ h ≤ 12, |
−13 ≤ k ≤ 14, | −16 ≤ k ≤16, | |
−14 ≤ l ≤ 15 | −22 ≤ l ≤ 22 | |
Crystal size, (mm3) | 0.48 × 0.28 × 0.25 | 0.21 × 0.18 × 0.07 |
2θ range, (°) | 9.956 to 138.182 | 10.524 to 136.818 |
Independent reflections | 3697 [Rint = 0.0669, Rσ = 0.1028] | 2504 [Rint = 0.0518, Rσ = 0.0227] |
Reflections collected | 16,188 | 36,237 |
Refinement method | Full-matrix | Full-matrix |
least-squares on F2 | least-squares on F2 | |
Data/restraints/parameters | 3697/1/278 | 2504/0/162 |
Goodness-of-fit on F2 | 1.093 | 1.147 |
Final R indices (I > 2σ(I)) (all data) | R1 = 0.0414, wR2 = 0.1041 R1 = 0.0803, wR2 = 0.1072 | R1 = 0.0759, wR2 = 0.1804 R1 = 0.0772, wR2 = 0.1811 |
Largest hole and peak (e·Å−3) | 0.46/−0.41 | 1.34/−1.46 |
Compound 1 | |||
Ni1–O1W | 2.0912(2) | O2W–Ni1–O1W | 89.52(7) |
Ni1–O2W | 2.0297(2) | O2W–Ni1–O3W | 89.15(7) |
Ni1–O3W | 2.1004(2) | O2W–Ni1–O4W | 174.49(7) |
Ni1–O4W | 2.0778(2) | O2W–Ni1–O5W | 91.25(7) |
Ni1–O5W | 2.1043(2) | O2W–Ni1–N1 | 90.137) |
Ni1–N1 | 2.059(2) | O3W–Ni1–O1W | 88.67(7) |
O4W–Ni1–O1W | 85.31(6) | O4W–Ni1–O3W | 88.85(7) |
O4W–Ni1–O5W | 90.59(7) | O5W–Ni1–O1W | 89.58(7) |
O5W–Ni1–O3W | 178.20(6) | N1–Ni1–O1W | 178.25(6) |
N1–Ni1–O3W | 93.03(7) | N1–Ni1–O4W | 95.10(7) |
N1–Ni1–O5W | 88.72(7) | ||
Compound 2 | |||
Co1–O1W | 2.076(5) | O1W–Co1–N1 | 91.03(1) |
Co1–O2W | 2.062(6) | O1W–Co1–N1#1 | 91.03(1) |
Co1–N1#1 | 2.110(5) | O1W–Co1–N6 | 89.57(1) |
Co1–N1 | 2.110(5) | O1W–Co1–N6#1 | 89.57(1) |
Co1–N6 | 2.105(5) | O2W–Co1–O1W | 180.0 |
Co1–N6#1 | 2.105(5) | O2W–Co1–N1#1 | 88.97(1) |
O2W–Co1–N1 | 88.97(1) | O2W–Co1–N6#1 | 90.43(1) |
O2W–Co1–N6 | 90.43(1) | N1#1–Co1–N1 | 177.9(3) |
N6–Co1–N1#1 | 88.32(2) | N6#1–Co1–N1 | 88.32(2) |
N6#1–Co1–N1#1 | 91.70(2) | N6–Co1–N1 | 91.70(2) |
N6–Co1–N6#1 | 179.1(3) |
D–H⋯A | d(D–H) | d(D⋯A) | d(H⋯A) | <(DHA) |
---|---|---|---|---|
Compound 1 | ||||
O2W–H2WB∙∙∙O12A#1 | 0.87 | 2.741(2) | 1.91 | 160.3 |
O3W–H3WA∙∙∙O11A#1 | 0.87 | 2.767(2) | 1.90 | 172.7 |
O5W–H5WB∙∙∙O12A#2 | 0.87 | 2.821(2) | 1.95 | 177.1 |
O4W–H4WA∙∙∙O11A#2 | 0.87 | 2.762(2) | 1.91 | 165.9 |
O5W–H5WA∙∙∙O6W | 0.87 | 2.776(3) | 1.92 | 168.4 |
O7W–H7WA∙∙∙O6W#3 | 0.87 | 2.824(3) | 1.96 | 174.4 |
O4W–H4WB∙∙∙O7W | 0.87 | 2.837(2) | 1.98 | 168.8 |
Compound 2 | ||||
O1W–H1W∙∙∙Cl1#4 | 1.03(7) | 3.039(3) | 2.14(7) | 167(6) |
O2W–H2W∙∙∙Cl1 | 0.91(7) | 3.030(3) | 2.14(7) | 169(7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baishya, T.; Gomila, R.M.; Barceló-Oliver, M.; Gil, D.M.; Bhattacharyya, M.K.; Frontera, A. Supramolecular Assemblies in Pyridine- and Pyrazole-Based Coordination Compounds of Co(II) and Ni(II): Characterization, Hirshfeld Analysis and Theoretical Studies. Crystals 2023, 13, 203. https://doi.org/10.3390/cryst13020203
Baishya T, Gomila RM, Barceló-Oliver M, Gil DM, Bhattacharyya MK, Frontera A. Supramolecular Assemblies in Pyridine- and Pyrazole-Based Coordination Compounds of Co(II) and Ni(II): Characterization, Hirshfeld Analysis and Theoretical Studies. Crystals. 2023; 13(2):203. https://doi.org/10.3390/cryst13020203
Chicago/Turabian StyleBaishya, Trishnajyoti, Rosa M. Gomila, Miquel Barceló-Oliver, Diego M. Gil, Manjit K. Bhattacharyya, and Antonio Frontera. 2023. "Supramolecular Assemblies in Pyridine- and Pyrazole-Based Coordination Compounds of Co(II) and Ni(II): Characterization, Hirshfeld Analysis and Theoretical Studies" Crystals 13, no. 2: 203. https://doi.org/10.3390/cryst13020203
APA StyleBaishya, T., Gomila, R. M., Barceló-Oliver, M., Gil, D. M., Bhattacharyya, M. K., & Frontera, A. (2023). Supramolecular Assemblies in Pyridine- and Pyrazole-Based Coordination Compounds of Co(II) and Ni(II): Characterization, Hirshfeld Analysis and Theoretical Studies. Crystals, 13(2), 203. https://doi.org/10.3390/cryst13020203