Computational Simulation by Phase Field: Martensite Transformation Kinetics and Variant Selection under External Fields
Abstract
1. Introduction
2. Computational Scheme
3. Results
3.1. Effect of the Loading Mode on Martensite Transformation Behaviour
3.2. Effect of the Magnetic Field on Martensite Transformation Behaviour
4. Discussion
5. Conclusions
- (1)
- Both stress–strain and magnetic fields can accelerate the martensite transformation process and increase the volume fraction of martensite by introducing an additional driving force.
- (2)
- Both uniaxial tension and compression conditions can significantly promote the martensite transformation by significantly increasing the martensite growth rate. However, an obviously preferred variant selection is also observed.
- (3)
- If a relatively large amount of martensite with an unknown preferred variant selection is needed, shearing is probably a better choice because this mode has a relatively balanced stress distribution in different directions compared to those of uniaxial tension and compression conditions.
- (4)
- In addition, if the demand for martensite is relatively small, the magnetic field, which has a relatively low phase transition rate, can be considered. This gentler method is conducive to a more precise control of the martensite volume fraction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Huang, M.X. Abnormal TRIP effect on the work hardening behavior of a quenching and partitioning steel at high strain rate. Acta Mater. 2020, 188, 551–559. [Google Scholar] [CrossRef]
- Josep Roa, J.; Suarez, S.; Guitar, A.; Fargas, G.; Mateo, A. Geometrically necessary dislocations on plastic deformation of polycrystalline TRIP steel. Crystals 2019, 9, 289. [Google Scholar] [CrossRef]
- Qayyum, F.; Guk, S.; Schmidtchen, M.; Kawalla, R.; Prahl, U. Modeling the local deformation and transformation behavior of cast X8CrMnNi16-6-6 TRIP steel and 10% Mg-PSZ composite using a continuum mechanics-based crystal plasticity model. Crystals 2020, 10, 221. [Google Scholar] [CrossRef]
- Schroeder, C.; Wendler, M.; Kreschel, T.; Volkova, O.; Weiss, A. Development of a stainless austenitic nitrogen-alloyed CrMnNiMo spring steel. Crystals 2019, 9, 456. [Google Scholar] [CrossRef]
- Yu, D.; Chen, Y.; Huang, L.; An, K. Tracing phase transformation and lattice evolution in a TRIP sheet steel under high-temperature annealing by real-time in situ neutron diffraction. Crystals 2018, 8, 360. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, P.; Li, W.; Kou, S.; Jiang, J.; Mao, X.; Yang, Z. The Microalloying effect of Ce on the mechanical properties of medium entropy bulk metallic glass composites. Crystals 2019, 9, 483. [Google Scholar] [CrossRef]
- Li, Y.; Chen, S.; Wang, C.; San Martin, D.; Xu, W. Modeling retained austenite in Q&P steels accounting for the bainitic transformation and correction of its mismatch on optimal conditions. Acta Mater. 2020, 188, 528–538. [Google Scholar] [CrossRef]
- Seo, E.J.; Cho, L.; De Cooman, B.C. Kinetics of the partitioning of carbon and substitutional alloying elements during quenching and partitioning (Q&P) processing of medium Mn steel. Acta Mater. 2016, 107, 354–365. [Google Scholar] [CrossRef]
- Seo, E.J.; Cho, L.; Estrin, Y.; De Cooman, B.C. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel. Acta Mater. 2016, 113, 124–139. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, W.S.; Chun, M.S.; Kim, J.J.; Bae, J.H.; Kim, M.H.; Lee, J.M. Effect of pre-straining on low-temperature mechanical behavior of AISI 304L. Mater. Sci. Eng. A 2012, 543, 50–57. [Google Scholar] [CrossRef]
- Lee, J.M.; Seul-Kee, K. Numerical simulation of membrane of LNG insulation system using user defined material subroutine. J. Comput. Struct. Eng. Inst. Korea 2014, 27, 265–272. [Google Scholar] [CrossRef][Green Version]
- Kamali, H.; Xie, H.; Bi, H.; Chang, E.; Xu, H.; Yu, H.; Jiang, Z. Deformation mechanism and texture evolution of a low-Ni Cr–Mn–N austenitic stainless steel under bending deformation. Mater. Sci. Eng. A 2021, 804, 140724. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.; Ha, Y.; Kim, W.; Sohn, S.S.; Kim, H.S.; Lee, B.J.; Kim, N.J.; Lee, S. Dynamic tension–compression asymmetry of martensitic transformation in austenitic Fe–(0.4, 1.0)C–18Mn steels for cryogenic applications. Acta Mater. 2015, 96, 37–46. [Google Scholar] [CrossRef]
- Nakada, N.; Ito, H.; Matsuoka, Y.; Tsuchiyama, T.; Takaki, S. Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels. Acta Mater. 2010, 58, 895–903. [Google Scholar] [CrossRef]
- Sohrabi, M.J.; Naghizadeh, M.; Mirzadeh, H. Deformation-induced martensite in austenitic stainless steels: A review. Arch. Civ. Mech. Eng. 2020, 20, 124. [Google Scholar] [CrossRef]
- Iwamoto, T.; Tsuta, T.; Tomita, Y. Investigation on deformation mode dependence of strain-induced martensitic transformation in trip steels and modelling of transformation kinetics. Int. J. Mech. Sci. 1998, 40, 173–182. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, S.; Song, H.; Cheng, M.; Zhang, H. The enhancement of transformation induced plasticity effect on austenitic stainless steels by cyclic tensile loading and unloading. Mater. Lett. 2011, 65, 1545–1547. [Google Scholar] [CrossRef]
- Yi, S.; Gao, S.; Shen, L.X. Fracture toughening mechanism of shape memory alloys under mixed-mode loading due to martensite transformation. Inter. J. Solids Struct. 2001, 38, 4463–4476. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Huang, M.; Hu, J.; Xu, W. The effects and mechanisms of pre-deformation with low strain on temperature-induced martensitic transformation. Acta Metal. Sin. 2021, 57, 575–585. [Google Scholar] [CrossRef]
- Suru, M.G.; Morosanu, C.; Bujoreanu, L.G. Variation tendencies of shape memory alloys surface relief as a function of training-cycling parameters. J. Optoelectron. Adv. M 2014, 16, 394–400. [Google Scholar] [CrossRef]
- Jiahua, Y.; Qiuhong, Z.; Jinliang, W.; Chenchong, W.; Wei, X. Synergistic effect of magnetic field and grain size on martensite nucleation and variant selection. Acta Metall. Sin. 2022. [Google Scholar] [CrossRef]
- Karaca, H.E.; Basaran, B.; Karaman, I.; Chumlyakov, Y.I. Stress-induced martensite to austenite phase transformation in Ni2MnGa magnetic shape memory alloys. Smart Mater. Struct. 2012, 21, 045011. [Google Scholar] [CrossRef]
- Schastlivtsev, V.M.; Kaletina, Y.V.; Fokina, E.A.; Yakovleva, I.L. Electron-microscopic examination of martensite crystals nucleated in the N24G4 steel under the action of a DC magnetic field. Fizika Metallov i Metallovedenie 2003, 95, 68–77. [Google Scholar]
- Fei, H.; Hedstrom, P.; Hoglund, L.; Borgenstam, A. A Thermodynamic-based model to predict the fraction of martensite in steels. Metall. Mater. Trans. A 2016, 47A, 4404–4410. [Google Scholar] [CrossRef]
- Lee, S.J.; Van Tyne, C.J. A kinetics model for martensite transformation in plain carbon and low-alloyed steels. Metall. Mater. Trans. A 2012, 43A, 422–427. [Google Scholar] [CrossRef]
- Mathevon, A.; Massardier, V.; Fabregue, D.; Ollat, M.; Rocabois, P.; Perez, M. Thermodynamic-based model coupled with phase transformation simulation to predict the ms temperature in the case of two-phase steel. Metall. Mater. Trans. A 2022, 53, 1674–1681. [Google Scholar] [CrossRef]
- Artemev, A.; Khachaturyan, A.G. The phase field model and computer simulation of martensitic transformation under applied stresses. Mater. Sci. Forum 2000, 327–328, 347–350. [Google Scholar] [CrossRef]
- Malik, A.; Amberg, G.; Borgenstam, A.; Ågren, J. Effect of external loading on the martensitic transformation—A phase field study. Acta Mater. 2013, 61, 7868–7880. [Google Scholar] [CrossRef]
- Ghosh, G.; Olson, G.B. Kinetics of F.C.C. → B.C.C. heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation. Acta Metall. 1994, 42, 3361–3370. [Google Scholar] [CrossRef]
- Ghosh, G.; Olson, G.B. Kinetics of F.c.c. → b.c.c. heterogeneous martensitic nucleation—II. Thermal activation. Acta Metall. 1994, 42, 3371–3379. [Google Scholar] [CrossRef]
- Li, C.; Gao, J.; Zhang, D.; Chen, Z.; Han, X. Influence of material parameters on 2D-martensitic transformation based on the phase-field finite-element method. Metall. Res. Technol. 2019, 116, 614. [Google Scholar] [CrossRef]
- Yeddu, H.K.; Lookman, T.; Saxena, A. The simultaneous occurrence of martensitic transformation and reversion of martensite. Mater. Sci. Eng. A 2014, 594, 48–51. [Google Scholar] [CrossRef]
- Ahluwalia, R.; Mikula, J.; Laskowski, R.; Quek, S.S. Phase field simulation of martensitic-transformation-induced plasticity in steel. Phys. Rev. Mater. 2020, 4, 103607. [Google Scholar] [CrossRef]
- Basaka, A.; Levitas, V.I. Matrix-precipitate interface-induced martensitic transformation within nanoscale phase field approach: Effect of energy and dimensionless interface width. Acta Mater. 2020, 189, 255–265. [Google Scholar] [CrossRef]
- Kundin, J.; Raab, D.; Emmerich, H. A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite. J. Mech. Phys. Solids 2021, 59, 2082–2102. [Google Scholar] [CrossRef]
- Song, P.; Ji, Y.; Chen, L.; Liu, W.; Zhang, C.; Chen, L.Q.; Yang, Z. Phase-field simulation of austenite growth behavior: Insights into the austenite memory phenomenon. Comp. Mater. Sci. 2016, 117, 139–150. [Google Scholar] [CrossRef]
- Shchyglo, O.; Du, G.; Engels, J.K.; Steinbach, I. Phase-field simulation of martensite microstructure in low-carbon steel. Acta Mater. 2019, 175, 415–425. [Google Scholar] [CrossRef]
- San Martín, D.; Aarts, K.W.P.; Rivera-Díaz-del-Castillo, P.E.J.; van Dijk, N.H.; Brück, E.; van der Zwaag, S. Isothermal martensitic transformation in a 12Cr–9Ni–4Mo–2Cu stainless steel in applied magnetic fields. J. Magn. Magn. Mater. 2008, 320, 1722–1728. [Google Scholar] [CrossRef]
- Martin, D.S.; van Dijk, N.H.; Brück, E.; van der Zwaag, S. The isothermal martensite formation in a maraging steel: A magnetic study. Mater. Sci. Eng. A 2008, 481–482, 757–761. [Google Scholar] [CrossRef]
- Malik, A.; Yeddu, H.K.; Amberg, G.; Borgenstam, A.; Ågren, J. Three dimensional elasto-plastic phase field simulation of martensitic transformation in polycrystal. Mater. Sci. Eng. A 2012, 556, 221–232. [Google Scholar] [CrossRef]
- Tsuchida, N.; Tomota, Y. A micromechanic modeling for transformation induced plasticity in steels. Mater. Sci. Eng. A 2000, 285, 345–352. [Google Scholar] [CrossRef]
Parameters | Values | Parameters | Values |
---|---|---|---|
0.1 | * | 0.35 | |
5.0 | |||
5.0 | |||
429 K |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Yuan, J.; Huang, M. Computational Simulation by Phase Field: Martensite Transformation Kinetics and Variant Selection under External Fields. Crystals 2022, 12, 829. https://doi.org/10.3390/cryst12060829
Wang C, Yuan J, Huang M. Computational Simulation by Phase Field: Martensite Transformation Kinetics and Variant Selection under External Fields. Crystals. 2022; 12(6):829. https://doi.org/10.3390/cryst12060829
Chicago/Turabian StyleWang, Chenchong, Jiahua Yuan, and Minghao Huang. 2022. "Computational Simulation by Phase Field: Martensite Transformation Kinetics and Variant Selection under External Fields" Crystals 12, no. 6: 829. https://doi.org/10.3390/cryst12060829
APA StyleWang, C., Yuan, J., & Huang, M. (2022). Computational Simulation by Phase Field: Martensite Transformation Kinetics and Variant Selection under External Fields. Crystals, 12(6), 829. https://doi.org/10.3390/cryst12060829