Synthesis, Characterization and Bio-Potential Activities of Co(II) and Ni(II) Complexes with O and N Donor Mixed Ligands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Metal Estimation
2.4. Preparation of Cobalt Complex
2.5. Preparation of Nickel Complex
2.6. Antimicrobial Activities
2.6.1. Determination of Antimicrobial Activity
Microorganisms
Preparation of Medium
Antimicrobial Assay
2.7. In Vitro Antioxidant Activity
DPPH Radical-Scavenging Activity Assay
2.8. In Vitro Anti-Inflammatory Activity
Inhibition of Albumin Denaturation
3. Results and Discussion
3.1. Elemental Analysis and Molar Conductance
3.2. Cyclic Voltammogram
3.3. UV-Visible Spectra and Magnetic Moments
3.4. IR-Spectrum of Metal Complexes
3.5. Powder XRD Analysis
3.6. Antibacterial and Antifungal Activities
3.7. In Vitro Anti-Inflammatory Activities
3.8. In Vitro Antioxidant Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, R.K.; Gupta, A.K.; Prakash, S.; Prakash, D. Mixed Ligand Complexes of Al(III) with Chelating Organic Acids and Ethylenediamine. Orient. J. Chem. 2020, 36, 1225–1228. [Google Scholar] [CrossRef]
- Dorkov, P.; Pantcheva, I.N.; Sheldrick, W.S.; Mayer-Figge, H.; Petrova, R. Synthesis, structure and antimicrobial activity of manganese (II) and cobalt (II) complexes of the polyether ionophore antibiotic Sodium Monensin A. J. Inorg. Biochem. 2008, 102, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Nishat, N.; Rahis-Ud-Din Dhyani, S. Synthesis, characterization and antimicrobial activity of a new macrocycle and its transition metal complexes. J. Coord. Chem. 2009, 62, 996–1004. [Google Scholar] [CrossRef]
- Akter, J.; Hanif, M.A.; Islam, M.S.; Haque, M.M.; Lee, S.H.; Banu, L.A. Synthesis, characterization and antimicrobial activity of Ni(II) and Zn(II) complexes with amino acids and heterocyclic amine. Der. Chem. Sin. 2016, 7, 75. [Google Scholar]
- Mercy, O.; Bamigboye, I.; Ejidike, P. Synthesis, Characterization, Antimalarial and Antimicrobial activities of Mixed Ibuprofen-Pyrimethamine M(II) Complexes [M=Cd, Co, Zn, Mn]. Nat. Appl. Sci. J. 2019, 2, 39. [Google Scholar] [CrossRef] [Green Version]
- Sodhi, R.K.; Paul, S. Metal Complexes in Medicine: An Overview and Update from Drug Design Perspective. Canc. Therapy Oncol. Int. J. 2019, 14, 555883. [Google Scholar] [CrossRef]
- Hossain, S.; Mannan, A.; Camellia, F.K.; Zaman, A.K.B.; Zakaria, C.M.; Kudrat-E-Zahan, M. Isoniazid Containing Metal Based Drugs as Potential Antimicrobial Agent: A Short Review. Sci. J. Chem. 2017, 5, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Akinyele, O.F.; Fakola, E.G.; Durosinmi, L.M.; Ajayeoba, T.A.; Ayeni, A.O. Synthesis and characterization of heteroleptic metal complexes of isoniazid and metformin. Ife J. Sci. 2019, 21, 184–192. [Google Scholar] [CrossRef]
- Nesa, S.; Hossain, S.; Nasira, S.; Uddin, N.; Ashrafuzzaman, M.; Habib, A.; Rashid, A.M.; Haque, M. Mixed ligand complexes: Synthesis, characterization and antibacterial activity investigation. Int. J. Chem. Stud. 2020, 8, 306–312. [Google Scholar] [CrossRef]
- Ogunniran, K.O.; Mesubi, M.A.; Adekoya, J.A.; Siyanbola, O.O.; Inegbinebor, A.I.; Ojo, O.O.; Adedapo, A.E.; Edobor-Osoh, A.; Narender, T. SYNTHESIS OF (E)-N’-(5-bromo-2-hydroxybenzylidene)nicotinohydrazide) AND ITS Pt(II), Zn(II), Mn(II), Ni(II) AND Mo(V) COMPLEXES AS POTENTIAL ANTI- TUBERCULAR AGENT. Can. J. Pure Appl. Sci. 2015, 9, 3519–3534. [Google Scholar]
- Kumbar, M.; Patil, S.A.; Toragalmath, S.S.; Kinnal, S.M.; Shettar, A.; Hosakeri, J.H. Anticancer activity studies of novel metal complexes of ligands derived from polycyclic aromatic compound via greener route. J. Organomet. Chem. 2020, 15, 121219. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, G.H.; Bassett, J.; Mendham, J.; Denney, R.C. Vogel’s Textbook of Quantitative Chemical Analysis, 5th ed.; John Wiley and Sons Inc.: New York, NY, USA, 2005; p. 10158. ISBN 0-582-44693-7. [Google Scholar]
- Kuchárová, V.; Kuchár, J.; Zaric, M.; Canovic, P.; Arsenijevic, N.; Volarevic, V.; Misirkic, M.; Trajkovic, V.; Radojević, I.D.; Čomić, L.R.; et al. Low-dimensional compounds containing bioactive ligands. Part XI: Synthesis, structures, spectra, in vitro anti-tumor and antimicrobial activities of 3D metal complexes with 8-hydroxyquinoline-5-sulfonic acid. Inorg. Chim. Acta 2019, 497, 119062. [Google Scholar] [CrossRef]
- Tadavi, S.K.; Bendre, R.S.; Patil, S.V.; Gaguna, S.; Rajput, J.D. Synthesis, crystal structures and antimicrobial activity of palladium metal complexes of sulfonyl hydrazone ligands. Eur. J. Chem. 2020, 11, 377–384. [Google Scholar] [CrossRef]
- Aly, S.A.; Fathalla, S.K. Preparation, characterization of some transition metal complexes of hydrazone derivatives and their antibacterial and antioxidant activities. Arab. J. Chem. 2020, 13, 3735–3750. [Google Scholar] [CrossRef]
- Shukla, S.; Mishra, A.P. Metal complexes used as anti-inflammatory agents: Synthesis, characterization and anti-inflammatory action of VO(II)-complexes. Arab. J. Chem. 2019, 12, 1715–1721. [Google Scholar] [CrossRef] [Green Version]
- Mary, S.J.; Chithra, B.; Sivajiganesan, S. In vitro anti -inflammatory activity of the flowers of nerium oleander (white). Int. J. Res. Granthaalayah 2017, 5, 123–128. [Google Scholar] [CrossRef]
- Ali, I.; Wani, W.A.; Saleem, K. Empirical Formulae to Molecular Structures of Metal Complexes by Molar Conductance. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2013, 43, 1162–1170. [Google Scholar] [CrossRef]
- Kuate, M.; Conde, M.A.; Mainsah, E.N.; Paboudam, A.G.; Tchieno, F.M.M.; Ketchemen, K.I.Y.; Kenfack, I.T.; Ndifon, P.T. Synthesis, Characterization, Cyclic Voltammetry, and Biological Studies of Co(II), Ni(II), and Cu(II) Complexes of a Tridentate Schiff Base, 1-((E)-(2-Mercaptophenylimino) Methyl) Naphthalen-2-ol (H2L1). J. Chem. 2020, 2020, 5238501. [Google Scholar] [CrossRef]
- Shaju, K.; Joby, T.; Vinod, P.; Kuriakose, N. Spectral and cyclic voltammetric studies on Cu(II)-Schiff base complex derived from anthracene-9(10 H)-one. IOSR J. Appl. Chem. 2014, 7, 64–68. [Google Scholar]
- Singh, K.; Thakur, R.; Kumar, V. Co(II), Ni(II), Cu(II), and Zn(II) complexes derived from 4-[{3-(4-bromophenyl)-1-phenyl-1H-pyrazol-4-ylmethylene}-amino]-3-mercapto-6-methyl-5-oxo-1,2,4-triazine. Beni-Suef Univ. J. Basic Appl. Sci. 2016, 5, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Geeta, B.; Shravankumar, K.; Reddy, P.M.; Ravikrishna, E.; Sarangapani, M.; Reddy, K.K.; Ravinder, V. Binuclear cobalt(II), nickel(II), copper(II) and palladium(II) complexes of a new Schiff-base as ligand: Synthesis, structural characterization, and antibacterial activity. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2010, 77, 911–915. [Google Scholar] [CrossRef] [PubMed]
- Ramadevi, P.; Singh, R.; Prajapati, A.; Gupta, S.; Chakraborty, D. Cu(II) Complexes of Isoniazid Schiff Bases: DNA/BSA Binding and Cytotoxicity Studies on A549 Cell Line. Hindawi Publ. Corp. Adv. Chem. 2014, 2014, 630575. [Google Scholar] [CrossRef] [Green Version]
- Adly, O.M.I.; Shebl, M.; Abdelrhman, E.M.; El-Shetary, B.A. Synthesis, spectroscopic, X-ray diffraction, antimicrobial and antitumor studies of Ni(II) and Co(II) complexes derived from 4- acetyl-5,6-diphenyl-3(2H)-pyridazinone and ethylenediamine. J. Mol. Struct. 2020, 1219, 128607. [Google Scholar] [CrossRef]
- Sovari, S.N.; Zobi, F. Recent Studies on the Antimicrobial Activity of Transition Metal Complexes of Groups 6–12. Chemistry 2020, 2, 418–452. [Google Scholar] [CrossRef]
- Manimaran, P.; Balasubramaniyan, S. Synthesis, Characterization and Biological Evaluation of Fe(III) and Cu(II) Complexes with 2,4-Dinitrophenyl hydrazine and Thiocyanate Ions. Asian J. Chem. 2019, 31, 780–784. [Google Scholar] [CrossRef]
- Hossain, S.; Zakaria, C.M.; Kudrat-E-Zahan, M. Metal Complexes as Potential Antimicrobial Agent: A Review. Am. J. Heterocycl. Chem. 2018, 4, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Szczepaniak, A.; Fichna, J. Organometallic Compounds and Metal Complexes in Current and Future Treatments of Inflammatory Bowel Disease and Colorectal Cancer—A Critical Review. Biomolecules 2019, 9, 398. [Google Scholar] [CrossRef] [Green Version]
- Tadele, K.T. Antioxidant Activity of Schiff Bases and Their Metal Complexes. A Recent Rev. J. Pharm. Med. Res. 2017, 3, 73–77. [Google Scholar]
- Ejidike, I.P.; Ajibade, P.A. Synthesis, Characterization, Anticancer, and Antioxidant Studies of Ru(III) Complexes of Monobasic Tridentate Schiff Bases. Bioinorg. Chem. Apps. Hindawi Publ. Corp. 2015, 2015, 890734. [Google Scholar] [CrossRef] [Green Version]
S. No. | Complex | Molecular Formula | Molecular Weight | Color | Yield (%) | Elemental Analysis (%) | Magnetic Moment (B.M) | Λm Ω −1 cm2 mole−1 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O | M | ||||||||
1 | [Co(L1)(L2)2(L3)] | C34H23N3O7Co | 667.12 | Dark pink | 82 | 61.12 (61.01) | 3.44 (3.53) | 6.29 (6.10) | 16.78 (16.87) | 8.83 (8.90) | 4.30 | 20.00 |
2 | [Ni(L1)(L2)2(L3)] | C34H23N3O7Ni | 667.25 | Green | 80 | 61.14 (61.90) | 3.44 (3.64) | 6.29 (6.39) | 16.78 (16.70) | 8.79 (8.69) | 2.90 | 06.00 |
Microbial Strains | RM1 Co(II) Complex 30 µL | RM2 Ni(II) Complex 30 µL | Std. (30 µL) | Con. (30 µL) |
---|---|---|---|---|
Escherichia coli | 3.95 ± 0.27 | 3.80 ± 0.26 | 7.05 ± 0.49 | 0.65 ± 0.04 |
Staphylococcus aureus | 3.55 ± 0.24 | 3.45 ± 0.24 | 6.50 ± 0.45 | 0.40 ± 0.02 |
Bacillus subtilis | 3.70 ± 0.25 | 3.65 ± 0.25 | 6.75 ± 0.47 | 0.50 ± 0.03 |
Candida albicans | 3.35 ± 0.23 | 3.30 ± 0.23 | 6.40 ± 0.44 | 0.35 ± 0.02 |
Aspergillus niger | 3.10 ± 0.21 | 3.05 ± 0.21 | 6.15 ± 0.43 | 0.20 ± 0.01 |
Samples | % of Inhibitions | IC50Value (µg/mL) | ||||
---|---|---|---|---|---|---|
100 (µg/mL) | 200 (µg/mL) | 300 (µg/mL) | 400 (µg/mL) | 500 (µg/mL) | ||
Co(II) Complex | 22.57 ± 1.49 | 42.65 ± 2.78 | 55.89 ± 3.17 | 73.92 ± 5.25 | 81.64 ± 5.98 | 265.03 |
Ni(II) Complex | 23.68 ± 1.65 | 44.73 ± 3.13 | 57.89 ± 4.05 | 75.01 ± 5.25 | 85.52 ± 5.98 | 252.09 |
Std. (Diclofenac Sodium) | 26.31 ± 1.84 | 47.36 ± 3.31 | 60.52 ± 4.23 | 78.94 ± 5.52 | 96.05 ± 6.72 | 230.75 |
Compounds | % of Inhibitions | IC50Value (µg/mL) | |||
---|---|---|---|---|---|
20 (µg/mL) | 40 (µg/mL) | 60 (µg/mL) | 80 (µg/mL) | ||
R1 (Co(II) Complex) | 23.18 ± 1.62 | 48.63 ± 3.40 | 75.45 ± 5.28 | 85.90 ± 6.01 | 42.28 |
R2 (Ni(II) Complex) | 21.82 ± 1.46 | 45.92 ± 3.54 | 70.97 ± 4.78 | 82.65 ± 5.26 | 44.88 |
Std. (Ascorbic acid) | 26.36 ± 1.84 | 50.90 ± 3.56 | 77.72 ± 5.44 | 93.18 ± 6.52 | 39.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muthuppalani, M.; Otaibi, A.A.; Balasubramaniyan, S.; Manikandan, S.; Manimaran, P.; Mathubala, G.; Manikandan, A.; Arshad, M.N.; Puttegowda, M.; Alorfi, H.S.; et al. Synthesis, Characterization and Bio-Potential Activities of Co(II) and Ni(II) Complexes with O and N Donor Mixed Ligands. Crystals 2022, 12, 326. https://doi.org/10.3390/cryst12030326
Muthuppalani M, Otaibi AA, Balasubramaniyan S, Manikandan S, Manimaran P, Mathubala G, Manikandan A, Arshad MN, Puttegowda M, Alorfi HS, et al. Synthesis, Characterization and Bio-Potential Activities of Co(II) and Ni(II) Complexes with O and N Donor Mixed Ligands. Crystals. 2022; 12(3):326. https://doi.org/10.3390/cryst12030326
Chicago/Turabian StyleMuthuppalani, M., Ahmed Al Otaibi, S. Balasubramaniyan, S. Manikandan, P. Manimaran, G. Mathubala, A. Manikandan, Muhammad Nadeem Arshad, Madhu Puttegowda, Hajer Saeed Alorfi, and et al. 2022. "Synthesis, Characterization and Bio-Potential Activities of Co(II) and Ni(II) Complexes with O and N Donor Mixed Ligands" Crystals 12, no. 3: 326. https://doi.org/10.3390/cryst12030326
APA StyleMuthuppalani, M., Otaibi, A. A., Balasubramaniyan, S., Manikandan, S., Manimaran, P., Mathubala, G., Manikandan, A., Arshad, M. N., Puttegowda, M., Alorfi, H. S., Khan, A., Asiri, A. M., & Rahman, M. M. (2022). Synthesis, Characterization and Bio-Potential Activities of Co(II) and Ni(II) Complexes with O and N Donor Mixed Ligands. Crystals, 12(3), 326. https://doi.org/10.3390/cryst12030326