Effect of Synthetic Quadripolymer on Rheological and Filtration Properties of Bentonite-Free Drilling Fluid at High Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experiment Instruments
2.2. Methods
2.2.1. Synthesis of Quadripolymer
2.2.2. Characterization of Molecular Structure
2.2.3. Sample Preparation
2.2.4. Drilling Fluid Performance Measurements
3. Results and Discussion
3.1. Characteristic
3.2. Performance Evaluation of Bentonite-Free Drilling Fluid with the Quadripolymer
3.2.1. Rheological Behavior
3.2.2. Salt Resistance
3.2.3. Filtration Property
3.2.4. Thermal Stability
3.2.5. HTHP Rheology
3.2.6. Reservoir Protection Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caeen, R.; Darley, H.C.H.; Gray, G.R. Composition and Properties of Drilling and Completion Fluids, 7th ed.; Gulf Professional Publishing: Waltham, MA, USA, 2017; pp. 36–38. [Google Scholar]
- Yan, L.L.; Wang, C.B.; Xu, B.; Sun, J.S.; Yue, W.; Yang, Z.X. Preparation of a Novel Amphiphilic Comb–like Terpolymer as Viscosifying Additive in Low-solid Drilling Fluid. Mater. Lett. 2013, 105, 232–235. [Google Scholar] [CrossRef]
- Liu, F.; Jiang, G.C.; Peng, S.L.; He, Y.B.; Wang, J.X. Amphoteric Polymer as an Anti–calcium Contamination Fluid–loss Additive in Water-based Drilling Fluids. Energy Fuels 2016, 30, 7221–7228. [Google Scholar] [CrossRef]
- Yang, X.J.; Mao, J.C.; Chen, Z.X.; Chen, Y.N.; Zhao, J.Z. Clean fracturing fluids for tight reservoirs: Opportunities with viscoelastic surfactant. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 1446–1459. [Google Scholar] [CrossRef]
- Mahto, V.; Sharma, V.P. Rheological Study of a Water Based Oil Well Drilling Fluid. J. Petrol. Sci. Eng. 2004, 45, 123–128. [Google Scholar] [CrossRef]
- Gautam, S.; Guria, C.; Rajak, D.K.; Pathak, A.K. Functionalization of Fly Ash for the Substitution of Bentonite in Drilling Fluid. J. Petrol. Sci. Eng. 2018, 166, 63–72. [Google Scholar] [CrossRef]
- Sepehri, S.; Soleyman, R.; Varamesh, A.; Valizadeh, M.; Nasiri, A. Effect of Synthetic Water-Soluble Polymers on the Properties of the Heavy Water-based Drilling Fluid at High Pressure-High Temperature (HPHT) Conditions. J. Petrol. Sci. Eng. 2018, 166, 850–856. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Mohammed, A. Effect of Nanoclay on the Electrical Resistivity and Rheological Properties of Smart and Sensing Bentonite Drilling Muds. J. Petrol. Sci. Eng. 2015, 130, 86–95. [Google Scholar] [CrossRef]
- Azouz, K.B.; Bekkour, K.; Dupuis, D. Influence of the Temperature on the Rheological Properties of Bentonite. Appl. Clay Sci. 2016, 123, 92–98. [Google Scholar] [CrossRef]
- Song, K.L.; Wu, Q.L.; Li, M.C.; Wojtanowicz, A.K.; Dong, L.; Zhang, X.; Ren, S.; Lei, T. Performance of Low Solid Bentonite Drilling Fluids Modified by Cellulose Nanoparticles. J. Nat. Gas Sci. Eng. 2016, 34, 1403–1411. [Google Scholar] [CrossRef]
- Zhou, H.; Deville, J.P.; Davis, C.L. Novel Thermally Stable High-density Brine-based Drill-in Fluids for HP/HT Applications. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, 8–11 March 2015. [Google Scholar]
- Xiao, J.F.; Li, Z.J.; Liu, Z.X. Application of Solid Free Drilling Fluid in Anpeng Oilfield. Drill. Fluid. Complet. Fluid 2002, 19, 82–84. [Google Scholar]
- Mustafa, V.K.; Tolga, A. Effect of polymers on the rheological properties of KCl/Polymer Type Drilling fluids. Energy Sources Part A Recovery Util. Environ. Eff. 2005, 27, 405–415. [Google Scholar] [CrossRef]
- Fink, J. Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids, 2nd ed.; Gulf Professional Publishing/Elsevier: Waltham, MA, USA, 2012; pp. 1–60. ISBN 978-0-12-383844-5. [Google Scholar]
- Elkatatny, S. Enhancing the Stability of Invert Emulsion Drilling Fluid for Drilling in High-pressure High-temperature Conditions. Energies 2018, 11, 2393. [Google Scholar] [CrossRef] [Green Version]
- Tehrani, M.A.; Popplestone, A.; Guarneri, A.; Carminati, S. Water Based Drilling Fluid for HT/HP Applications. In Proceedings of the SPE International Symposium on Oilfield Chemistry, Houston, TX, USA, 28 February 2007. [Google Scholar]
- Stefano, G.D.; Stamatakis, E.; Young, S. Meeting the Ultrahigh-temperature/Ultrahigh-pressure Fluid Challenge. SPE Drill. Completion 2013, 28, 86–92. [Google Scholar] [CrossRef]
- Li, M.C.; Wu, Q.; Song, K.; Qing, Y.; Wu, Y. Cellulose Nanoparticles as Modifiers for Rheology and Fluid Loss in Bentonite Water-Based Fluids. ACS Appl. Mater. Interfaces. 2015, 7, 5006–5016. [Google Scholar] [CrossRef] [PubMed]
- Taye, S.O.; Johann, P. Preparation and Properties of a Dispersing Fluid Loss Additive Based on Humic Acid Graft Copolymer Suitable for Cementing High Temperature (200°C) Oil Wells. J. Appl. Polym. Sci. 2013, 129, 2544–2553. [Google Scholar] [CrossRef]
- Perricone, A.C.; Enright, D.P.; Lucas, J.M. Vinyl Sulfonate Copolymers for High-temperature Filtration Control of Water-based Muds. SPE Drill. Eng. 1986, 1, 358–364. [Google Scholar] [CrossRef]
- Tao, W.; Jie, Y.; Sun, Z.S.; Wang, L.; Wang, J. Solution and Drilling Fluid Properties of Water Soluble AM-AA-SSS Copolymers by Inverse Microemulsion. J. Petrol. Sci. Eng. 2011, 78, 334–337. [Google Scholar] [CrossRef]
- Wu, Y.M.; Zhang, B.Q.; Wu, T.; Zhang, C.G. Properties of the Forpolymer of N-Vinylpyrrolidone with Itaconic Acid, Acrylamide and 2-Acrylamido-2-Methyl-1-Propane Sulfonic Acid as a Fluid-Loss Reducer for Drilling Fluid at High Temperatures. Colloid Polym. Sci. 2001, 279, 836–842. [Google Scholar] [CrossRef]
- Munawar, K.; Munawar, J.B.K. Viscoplastic Modeling of a Novel Lightweight Biopolymer Drilling Fluid for Underbalanced Drilling. Ind. Eng. Chem. Res. 2012, 51, 4056–4068. [Google Scholar] [CrossRef]
- Bai, X.D.; Yang, Y.; Xiao, D.Y.; Pu, X.L.; Wang, X. Synthesis, Characterization, and Flocculation Performance of Anionic Polyacrylamide P (AM-AA-AMPS). J. Appl. Polym. Sci. 2013, 129, 1984–1991. [Google Scholar] [CrossRef]
- Wu, Y.M.; Sun, D.J.; Zhang, B.Q.; Zhang, C.G. Properties of High-Temperature Drilling Fluids Incorporating Disodium Itaconate-Acrylamide-Sodium 2-Acrylamido-2-Methyl-Propane Sulfonate Terpolymers as Fluid-Loss Reducers. J. Appl. Poly. Sci. 2002, 83, 3068–3075. [Google Scholar] [CrossRef]
- Peng, B.; Peng, S.; Long, B.; Miao, Y.; Guo, W.Y. Properties of High-Temperature Resistant Drilling Fluids Incorporating Acrylamide/(Acrylic Acid)/(2-Acrylamido-2-Methyl-1-Propane Sulfonic Acid) Terpolymer and Aluminum Citrate as Filtration Control Agents. J. Vinyl. Addit. Technol. 2010, 16, 84–89. [Google Scholar] [CrossRef]
- Huang, Y.M.; Zhang, D.Y.; Zheng, W.L. A Synthetic Copolymer (AM/AMPS/DMDAAC/SSS) as Rheology Modifier and Fluid Loss Additive at HTHP for Water-Based Drilling Fluids. J. Appl. Poly. Sci. 2019, 139, 47813. [Google Scholar] [CrossRef]
- Stamatakis, E.; Steve, Y.; Guido, D.S.; Swaco, M.-I. Meeting the Ultra HTHP Fluids Challenge. In Proceedings of the SPE Oil and Gas India Conference and Exhibition, Mumbai, India, 28–30 March 2012. [Google Scholar]
- API Recommended Practice. Recommended Practice for Field Testing Water–based Drilling Fluids. In API Recommended Practice13B–1, 3rd ed.; API Publishing Services: Washington, DC, USA, 2003; pp. 7–8. [Google Scholar]
- Guo, H.; Brûlet, A.; Rajamohanan, P.R.; Marcellan, A.; Sanson, N.; Hourdet, D. Influence of Topology of LCST-Based Graft Copolymers on Responsive Assembling in Aqueous Media. Polymer 2015, 60, 164–175. [Google Scholar] [CrossRef] [Green Version]
Instrument | Provider |
---|---|
Nicolet 6700 Fourier Transform Infrared Spectrometer | Thermo Fisher Scientific Co., Ltd., Waltham, MA, USA |
Angilent 400 MHz NMR Spectrum | Angilent Technologies Co., Ltd., California, USA |
GJSS-B12K multi–spindle mixer | Qingdao Haitongda Special Purpose Instrument Co., Ltd., Qingdao City, Shandong Province, China |
ZNN-D6 viscometer | |
SD–4 API filtration apparatus | |
GCS71-A HTHP filtration apparatus | |
XGRL-4A Hot roller oven | |
ZDY50-180 Core flow tester | Nantong Yichuang Experimental Instrument Co., Ltd., Nantong City, Jiangsu Province, China |
Sample | MW | Mη | MN | PDI(MW/MN) |
---|---|---|---|---|
quadripolymer | 1161,000 | 1090,000 | 684,000 | 1.6974 |
Formula | Rheological Parameters | ||||
---|---|---|---|---|---|
AV, mPa·s | PV, mPa·s | YP, Pa | YP/PV, - | G1/G2 Pa/Pa | |
1# + 0.3 wt% quadripolymer | 25 | 16 | 9.2 | 0.58 | 1.5/1.5 |
1# + 0.6 wt% quadripolymer | 35 | 21 | 14.3 | 0.68 | 2.5/3.5 |
1# + 0.9 wt% quadripolymer | 48 | 27 | 21.5 | 0.80 | 4.5/5.5 |
1# + 0.3 wt% Drispac | 24 | 17 | 7.2 | 0.42 | 1.0/1.0 |
1# + 0.6 wt% Drispac | 33 | 22 | 11.2 | 0.51 | 1.5/2.0 |
1# + 0.9 wt% Drispac | 52 | 34 | 18.4 | 0.54 | 2.5/3.0 |
Formula | AV, mPa·s | PV, mPa·s | YP, Pa | YP/PV | G1/G2 Pa/Pa |
---|---|---|---|---|---|
2# | 48 | 27 | 21.5 | 0.80 | 4.5/5.5 |
2#+5 wt% NaCl | 40 | 24 | 16.4 | 0.68 | 3.5/4.0 |
2#+10 wt% NaCl | 36 | 22 | 14.3 | 0.65 | 1.5/1.5 |
3# | 52 | 34 | 18.4 | 0.54 | 2.5/3.0 |
3#+5 wt% NaCl | 38 | 28 | 10.2 | 0.37 | 1.0/1.5 |
3#+10 wt% NaCl | 32 | 24 | 8.2 | 0.34 | 1.0/1.0 |
T, °C | PV, mPa·s | YP, Pa | G1/G2, Pa/Pa | FLAPI, mL | FLHTHP, mL |
---|---|---|---|---|---|
25 | 27 | 21.5 | 4.5/5.5 | 3.0 | - |
100 | 25 | 14.3 | 4.0/5.0 | 4.2 | 14.6 |
120 | 24 | 14.3 | 3.5/4.5 | 5.4 | 17.8 |
140 | 23 | 13.3 | 3.5/4.0 | 6.6 | 19.7 |
160 | 22 | 10.4 | 2.5/3.5 | 7.4 | 21.6 |
180 | 20 | 8.2 | 1.5/2.5 | 8.6 | 24.8 |
200 | 12 | 2.0 | 0.5/0.5 | 12.4 | 46.4 |
Core Sample | Porosity, % | K1, mD | K2, mD | Recovery Rate, % |
---|---|---|---|---|
a | 13.51 | 7.25 | 6.43 | 88.69 |
Cut off 1 cm of contaminated section | 6.94 | 95.72 | ||
b | 19.20 | 12.85 | 10.98 | 85.45 |
Cut off 1 cm of contaminated section | 12.11 | 94.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Chen, M.; Li, X.; Yin, X.; Zheng, W. Effect of Synthetic Quadripolymer on Rheological and Filtration Properties of Bentonite-Free Drilling Fluid at High Temperature. Crystals 2022, 12, 257. https://doi.org/10.3390/cryst12020257
Wang J, Chen M, Li X, Yin X, Zheng W. Effect of Synthetic Quadripolymer on Rheological and Filtration Properties of Bentonite-Free Drilling Fluid at High Temperature. Crystals. 2022; 12(2):257. https://doi.org/10.3390/cryst12020257
Chicago/Turabian StyleWang, Jiangfeng, Mengting Chen, Xiaohui Li, Xuexuan Yin, and Wenlong Zheng. 2022. "Effect of Synthetic Quadripolymer on Rheological and Filtration Properties of Bentonite-Free Drilling Fluid at High Temperature" Crystals 12, no. 2: 257. https://doi.org/10.3390/cryst12020257
APA StyleWang, J., Chen, M., Li, X., Yin, X., & Zheng, W. (2022). Effect of Synthetic Quadripolymer on Rheological and Filtration Properties of Bentonite-Free Drilling Fluid at High Temperature. Crystals, 12(2), 257. https://doi.org/10.3390/cryst12020257