Effects of Radio Frequency Bias on the Structure Parameters and Mechanical Properties of Magnetron-Sputtered Nb Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Principle
2.2. Experimental Procedure
3. Results
3.1. RF Bias
3.2. Film Stress
3.3. Crystal Structure
3.4. Hardness and Elastic Modulus
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godmann, S.B.; Davidson, J.A.; Fornasier, V.L.; Mishra, A.K. Histological response to cylinders of a low modulus Titanium alloy (Ti-13Nb-13Zr) and a wear resistant Zirconium alloy (Zr-2.5Nb) implanted in the rabbit tibia. J. Appl. Biomater. 1993, 4, 331–339. [Google Scholar] [CrossRef]
- Matsuno, H.; Yokoyama, A.; Watari, F.; Uo, M.; Kawasaki, T. Biocompatibility and osteogenesis of refractoy metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 2001, 22, 1253–1262. [Google Scholar] [CrossRef]
- Eisenbarth, E.; Velten, D.; Müller, M.; Thull, R.; Brene, J. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials 2004, 25, 5705–5713. [Google Scholar] [CrossRef]
- Olivares-Navarrete, R.; Olaya, J.J.; Ramírez, C.; Rodil, S.E. Biocompatibility of niobium coatings. Coatings 2011, 1, 72–87. [Google Scholar] [CrossRef]
- Iosad, N.N.; Klapwijk, T.M.; Polyakov, S.N.; Roddatis, V.V.; Kov’ev, E.K.; Dmitriev, P.N. Properties of DC magnetron sputtered Nb and NbN films for different source conditions. IEEE Trans. Appl. Supercond. 1999, 9, 1720–1723. [Google Scholar] [CrossRef]
- Wu, C.T. Intrinsic stress of magnetron-sputtered niobium films. Thin Solid Films 1979, 64, 103–110. [Google Scholar] [CrossRef]
- Gao, H.; Wang, S.; Xu, D.; Wang, X.; Zhong, Q.; Zhong, Y.; Li, J.; Cao, W. Study of DC Magnetron Sputtered Nb Films. Crystals 2022, 12, 31. [Google Scholar] [CrossRef]
- Dobrovolskiy, O.V.; Huth, M. Crossover from dirty to clean superconducting limit in dc magnetron-sputtered thin Nb films. Thin Solid Films 2012, 520, 5985–5990. [Google Scholar] [CrossRef]
- De Freitas, T.C.; Gonzalez, J.L.; Nascimento, V.P.; Passamani, E.C. The role of the substrate temperature on superconducting properties of sputtered Nb films. Thin Solid Films 2016, 611, 33–38. [Google Scholar] [CrossRef]
- Li, X.; Cao, W.H.; Tao, X.F.; Ren, L.L.; Zhou, L.Q.; Xu, G.F. Structural and nanomechanical characterization of niobium films deposited by DC magnetron sputtering. Appl. Phys. A 2016, 122, 505. [Google Scholar] [CrossRef]
- Valente-Feliciano, A.M. Nb films: Substrates, nucleation & crystal growth. In Proceedings of the 15th International Conference on RF Superconductivity, Chicago, IL, USA, 25–29 July 2011; pp. 332–342. [Google Scholar]
- Okolo, B.; Lamparter, P.; Welzel, U.; Mittemeijer, E.J. Stress, texture, and microstructure in niobium thin films sputter deposited onto amorphous substrates. J. Appl. Phys. 2004, 95, 466–476. [Google Scholar] [CrossRef]
- Zhang, K.; Wen, M.; Meng, Q.N.; Hu, C.Q.; Li, X.; Liu, C.; Zheng, W.T. Effects of substrate bias voltage on the microstructure, mechanical properties and tribological behavior of reactive sputtered niobium carbide films. Surf. Coat. Technol. 2012, 212, 185–191. [Google Scholar] [CrossRef]
- Sekhar, M.C.; Kondaiah, P.; Chandra, S.J.; Rao, G.M.; Uthanna, S. Effect of substrate bias voltage on the structure, electric and dielectric properties of TiO2 thin films by DC magnetron sputtering. Appl. Surf. Sci. 2011, 258, 1789–1796. [Google Scholar] [CrossRef]
- Khamseh, S.; Alibakhshi, E.; Ramezanzadeh, B.; Sari, M.G. A tailored pulsed substrate bias voltage deposited (aC: Nb) thin-film coating on GTD-450 stainless steel: Enhancing mechanical and corrosion protection characteristics. Chem. Eng. J. 2021, 404, 126490. [Google Scholar] [CrossRef]
- Imamura, T.; Hasuo, S. Effects of intrinsic stress on sub-micrometer Nb/AlO/sub x//Nb Josephson junctions. IEEE Trans. Magn. 1989, 25, 1119–1122. [Google Scholar] [CrossRef]
- Amos, R.S.; Breyer, P.E.; Huang, H.H.; Lichtenberger, A.W. Stress and source conditions of DC magnetron sputtered Nb films. IEEE Trans. Appl. Supercond. 1995, 5, 2326–2329. [Google Scholar] [CrossRef]
- Ding, J.C.; Mei, H.; Jeong, S.; Zheng, J.; Wang, Q.M.; Kim, K.H. Effect of bias voltage on the microstructure and properties of Nb-DLC films prepared by a hybrid sputtering system. J. Alloys Compd. 2021, 861, 158505. [Google Scholar] [CrossRef]
- Huang, K.; Li, L.; Wang, L.; Li, G.; Xu, Y. Effect of DC bias and RF self-bias on the structure and properties of chromium oxide coatings prepared by vacuum cathodic arc deposition. Vacuum 2019, 164, 325–331. [Google Scholar] [CrossRef]
- Ou, J.; Men, Z. Formation of the radio frequency sheath of plasma with Cairns–Tsallis electron velocity distribution. Phys. Plasmas 2020, 27, 083517. [Google Scholar] [CrossRef]
- Doerner, M.; Nix, W. Stresses and deformation processes in thin films on substrates. Crit. Rev. Solid State Mater. Sci. 1988, 14, 225–268. [Google Scholar] [CrossRef]
- Windischmann, H. Intrinsic stress in sputter-deposited thin films. Crit. Rev. Solid State Mater. Sci. 1992, 17, 547–596. [Google Scholar] [CrossRef]
- Battu, A.K.; Makeswaran, N.; Ramana, C.V. Fabrication, characterization and optimization of high conductivity and high quality nanocrystalline molybdenum thin films. J. Mater. Sci. Technol. 2019, 35, 2734–2741. [Google Scholar] [CrossRef]
- Battu, A.K.; Zade, V.B.; Deemer, E.; Ramana, C.V. Microstructure-Mechanical Property Correlation in Size Controlled Nanocrystalline Molybdenum Films. Adv. Eng. Mater. 2018, 20, 1800496. [Google Scholar] [CrossRef]
- Xiang, P.; Liu, J.S.; Li, M.Y.; Yang, H.F.; Liu, Z.T.; Fan, C.C.; Shen, D.W.; Wang, Z.; Liu, Z. In Situ Electronic Structure Study of Epitaxial Niobium Thin Films by Angle-Resolved Photoemission Spectroscopy. Chin. Phys. Lett. 2017, 34, 077402. [Google Scholar] [CrossRef]
- Nivedita, L.R.; Haubert, A.; Battu, A.K. Correlation between crystal structure, surface/interface microstructure, and electrical properties of nanocrystalline niobium thin films. Nanomaterials 2020, 10, 1287. [Google Scholar] [CrossRef]
- Hussein, E.T.A.; Yousif, B.A. Effect of silver nanoparticle on structural and some (optical, electrical) properties of poly (vinyl chloride) films AIP Conference Proceedings. AIP Publ. LLC 2020, 2213, 020199. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef]
- Bunshah, R.F.; Weissmantel, C. Handbook of Hard Coatings; Noyes Publications: Park Ridge, NJ, USA, 2001; Volume 3, pp. 77–107. [Google Scholar]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- O’Brien, B. Niobium Biomaterials; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Caicedo, J.C.; Gonzalez, R.; Caicedo, H.H.; Gholipourmalekabadi, M.; Amaya, C. Mechanical and tribological properties of V–C–N coatings as a function of applied bias voltage. J. Superhard Mater. 2016, 38, 337–350. [Google Scholar] [CrossRef]
RF Bias Power (W) | Hardness (GPa) | Elastic Modulus (GPa) |
---|---|---|
0 | 4.17 ± 0.45 | 143.19 ± 18.49 |
20 | 4.42 ± 0.65 | 138.82 ± 21.21 |
40 | 5.16 ± 0.59 | 140.70 ± 5.08 |
60 | 5.34 ± 0.58 | 140.72 ± 13.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, Z.; Zhong, Y.; Tao, X.; Li, W.; Gao, H.; Yao, Y. Effects of Radio Frequency Bias on the Structure Parameters and Mechanical Properties of Magnetron-Sputtered Nb Films. Crystals 2022, 12, 256. https://doi.org/10.3390/cryst12020256
Ni Z, Zhong Y, Tao X, Li W, Gao H, Yao Y. Effects of Radio Frequency Bias on the Structure Parameters and Mechanical Properties of Magnetron-Sputtered Nb Films. Crystals. 2022; 12(2):256. https://doi.org/10.3390/cryst12020256
Chicago/Turabian StyleNi, Zegang, Yuan Zhong, Xingfu Tao, Wei Li, Huifang Gao, and Yan Yao. 2022. "Effects of Radio Frequency Bias on the Structure Parameters and Mechanical Properties of Magnetron-Sputtered Nb Films" Crystals 12, no. 2: 256. https://doi.org/10.3390/cryst12020256
APA StyleNi, Z., Zhong, Y., Tao, X., Li, W., Gao, H., & Yao, Y. (2022). Effects of Radio Frequency Bias on the Structure Parameters and Mechanical Properties of Magnetron-Sputtered Nb Films. Crystals, 12(2), 256. https://doi.org/10.3390/cryst12020256