The Effect of Ne+ Ion Implantation on the Crystal, Magnetic, and Domain Structures of Yttrium Iron Garnet Films
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Simulation of Defect Formation during Ion Implantation of YIG Crystals with Ne+ Ions
3.2. High-Resolution X-ray Diffractometry
3.3. Mössbauer Spectroscopy and Magnetic Force Microscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Weng, G.; Wang, J.; Liu, Y.; Zhu, X.; Dai, J. Magnetic Stress Sensing System for Nondestructive Stress Testing of Structural Steel and Steel Truss Components Based on Existing Magnetism. Sensors 2020, 20, 4043. [Google Scholar] [CrossRef] [PubMed]
- Chizhik, A.; Gonzalez, J.; Zhukov, A.; Corte-Leon, P.; Zhukova, V.; Gawroński, P.; Stupakiewicz, A. Influence of combined mechanical stress on magnetic structure in magnetic microwires. J. Magn. Magn. Mater. 2020, 513, 166974. [Google Scholar] [CrossRef]
- Velychkovych, A.; Bedzir, O.; Shopa, V. Laboratory experimental study of contact interaction between cut shells and resilient bodies. Eng. Solid Mech. 2021, 9, 425–438. [Google Scholar] [CrossRef]
- Psuj, G.; Lopato, P.; Maciusowicz, M.; Herbko, M. A System for Monitoring of Broadband FMR Phenomenon in Low-Carbon Steel Films Subjected to Deformations. Sensors 2021, 21, 4301. [Google Scholar] [CrossRef]
- Dutkiewicz, M.; Velychkovych, A.; Shatskyi, I.; Shopa, V. Efficient Model of the Interaction of Elastomeric Filler with an Open Shell and a Chrome-Plated Shaft in a Dry Friction Damper. Materials 2022, 15, 4671. [Google Scholar] [CrossRef]
- Yuan, B.; Ying, Y.; Morgese, M.; Ansari, F. Theoretical and Experimental Studies of Micro-Surface Crack Detections Based on BOTDA. Sensors 2022, 22, 3529. [Google Scholar] [CrossRef]
- Shats’kyi, I.P. Closure of a longitudinal crack in a shallow cylindrical shell in bending. Mater. Sci. 2005, 41, 186–191. [Google Scholar] [CrossRef]
- Ropyak, O.Y.; Vytvytskyi, V.S.; Velychkovych, A.S.; Pryhorovska, T.O.; Shovkoplias, M.V. Study on grinding mode effect on external conical thread quality. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1018, 012014. [Google Scholar] [CrossRef]
- Hisano, K.; Kimura, S.; Ku, K.; Shigeyama, T.; Akamatsu, N.; Shishido, A.; Tsutsumi, O. Mechano-Optical Sensors Fabricated with Multilayered Liquid Crystal Elastomers Exhibiting Tunable Deformation Recovery. Adv. Funct. Mater. 2021, 31, 2104702. [Google Scholar] [CrossRef]
- Klochko, N.P.; Klepikova, K.S.; Zhadan, D.O.; Petrushenko, S.I.; Kopach, V.R.; Khrypunov, G.S.; Lyubov, V.M.; Dukarov, S.V.; Nikitin, V.O.; Maslak, M.O.; et al. Structure, optical, electrical and thermoelectric properties of solution-processed Li-doped NiO films grown by SILAR. Mater. Sci. Semicond. Process. 2018, 83, 42–49. [Google Scholar] [CrossRef]
- Zhanturina, N.; Sergeyev, D.; Aimaganbetova, Z.; Zhubaev, A.; Bizhanova, K. Structural Properties of Yttrium Aluminum Garnet, Doped with Lanthanum. Crystals 2022, 12, 1132. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, P.; Bidthanapally, R.; Zhang, J.; Zhang, W.; Page, M.R.; Zhang, T.; Srinivasan, G. Strain Control of Magnetic Anisotropy in Yttrium Iron Garnet Films in a Composite Structure with Yttrium Aluminum Garnet Substrate. J. Compos. Sci. 2022, 6, 203. [Google Scholar] [CrossRef]
- Witkiewicz-Lukaszek, S.; Gorbenko, V.; Zorenko, T.; Syrotych, Y.; Mares, J.A.; Nikl, M.; Sidletskiy, O.; Bilski, P.; Yoshikawa, A.; Zorenko, Y. Composite Detectors Based on Single-Crystalline Films and Single Crystals of Garnet Compounds. Materials 2022, 15, 1249. [Google Scholar] [CrossRef]
- Gorbenko, V.; Zorenko, T.; Witkiewicz-Łukaszek, S.; Shakhno, A.; Osvet, A.; Batentschuk, M.; Fedorov, A.; Zorenko, Y. Crystallization and Investigation of the Structural and Optical Properties of Ce3+-Doped Y3−xCaxAl5−ySiyO12 Single Crystalline Film Phosphors. Crystals 2021, 11, 788. [Google Scholar] [CrossRef]
- Hashimoto, R.; Itaya, T.; Uchida, H.; Funaki, Y.; Fukuchi, S. Properties of Magnetic Garnet Films for Flexible Magneto-Optical Indicators Fabricated by Spin-Coating Method. Materials 2022, 15, 1241. [Google Scholar] [CrossRef]
- Lazcano-Ortiz, Z.; Ordóñez-Romero, C.L.; Domínguez-Juárez, J.L.; Monsivais, G.; Quintero-Torres, R.; Matatagui, D.; Fragoso-Mora, J.R.; Qureshi, N.; Kolokoltsev, O. Magnonic Crystal with Strips of Magnetic Nanoparticles: Modeling and Experimental Realization via a Dip-Coating Technique. Magnetochemistry 2021, 7, 155. [Google Scholar] [CrossRef]
- Ropyak, L.Y.; Makoviichuk, M.V.; Shatskyi, I.P.; Pritula, I.M.; Gryn, L.O.; Belyakovskyi, V.O. Stressed state of laminated interference-absorption filter under local loading. Funct. Mater. 2020, 27, 638–642. [Google Scholar] [CrossRef]
- Schmidt, G.; Hauser, C.; Trempler, P.; Paleschke, M.; Papaioannou, E.T. Ultra Thin Films of Yttrium Iron Garnet with Very Low Damping: A Review. Phys. Status Solidi 2020, 257, 1900644. [Google Scholar] [CrossRef]
- Schauer, P.; Lalinský, O.; Kučera, M. Overview of S(T)EM electron detectors with garnet scintillators: Some potentials and limits. Microsc. Res. Tech. 2021, 84, 753–770. [Google Scholar] [CrossRef]
- Levchuk, K.H.; Radchenko, T.M.; Tatarenko, V.A. High-temperature entropy effects in the tetragonality of the ordering interstitial-substitutional solution based on the body-centred tetragonal metal. Metallofiz. NoveishieTekhnol. 2021, 43, 1–26. [Google Scholar] [CrossRef]
- Bembenek, M.; Prysyazhnyuk, P.; Shihab, T.; Machnik, R.; Ivanov, O.; Ropyak, L. Microstructure and Wear Characterization of the Fe-Mo-B-C—Based Hardfacing Alloys Deposited by Flux-Cored Arc Welding. Materials 2022, 15, 5074. [Google Scholar] [CrossRef]
- Melnick, O.B.; Soolshenko, V.K.; Levchuk, K.H. Thermodynamic prediction of phase composition of transition metals high-entropy alloys. Metallofiz. NoveishieTekhnol. 2020, 42, 1387–1400. [Google Scholar] [CrossRef]
- Krivileva, S.; Zakovorotniy, A.; Moiseev, V.; Ponomareva, N.; Rassokha, A.; Zinchenko, O. Automating the process of calcu-lating the singular points and modeling the phase diagrams of multicomponent oxide systems. Funct. Mater. 2019, 26, 347–352. [Google Scholar] [CrossRef]
- Shihab, T.; Prysyazhnyuk, P.; Semyanyk, I.; Anrusyshyn, R.; Ivanov, O.; Troshchuk, L. Thermodynamic Approach to the Development and Selection of Hardfacing Materials in Energy Industry. Manag. Syst. Prod. Eng. 2020, 28, 84–89. [Google Scholar] [CrossRef]
- Serga, A.A.; Chumak, A.V.; Hillebrands, B. YIG magnonics. J. Phys. Appl. Phys. 2010, 43, 264002. [Google Scholar] [CrossRef]
- Yu, H.; Xiao, J.; Pirro, P. Magnon spintronics. J. Magn. Magn. Mater. 2018, 450, 1–2. [Google Scholar] [CrossRef]
- Kiechle, M.; Papp, A.; Mendisch, S.; Ahrens, V.; Golibrzuch, M.; Bernstein, G.H.; Porod, W.; Csaba, G.; Becherer, M. Spin-wave optics in yig by ion-beam irradiation. arXiv 2022, arXiv:2206.14696. [Google Scholar]
- Merbouche, H.; Divinskiy, B.; Nikolaev, K.O.; Kaspar, C.; Pernice, W.H.P.; Gouéré, D.; Lebrun, R.; Cros, V.; Ben Youssef, J.; Bortolotti, P.; et al. Giant nonlinear self-phase modulation of large-amplitude spin waves in microscopic YIG waveguides. Sci. Rep. 2022, 12, 7246. [Google Scholar] [CrossRef]
- Capku, Z.; Yildiz, F. Spin wave modes observation in YIG thin films with perpendicular magnetic anisotropy. J. Magn. Magn. Mater. 2021, 538, 168290. [Google Scholar] [CrossRef]
- Fodchuk, I.M.; Gutsuliak, I.I.; Dovganiuk, V.V.; Kotsyubynskiy, A.O.; Pietsch, U.; Pashniak, N.V.; Bonchyk, O.Y.; Syvorotka, I.M.; Lytvyn, P.M. Magnetic and structural changes in the near-surface epitaxial Y2.95La0.05Fe5O12 films after high-dose ion implantation. Appl. Opt. 2016, 55, B144–B149. [Google Scholar] [CrossRef]
- Fodchuk, I.; Hutsuliak, I.; Dovganyuk, V.; Kuzmin, A.; Roman, Y.; Solodkyi, M.; Pynuk, P.; Lytvyn, P.; Gudymenko, O.; Syvorotka, I.; et al. X-ray investigations of structure of thick YIG epitaxial systems of different growth parameters. In Proceedings of the SPIE—The International Society for Optical Engineering, Chernivtsi, Ukraine, 20 December 2021; Volume 12126, pp. 408–415. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM–The stopping and range of ions in matter. In Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms; Elsevier: Amsterdam, The Netherlands, 2010; Volume 268, pp. 1818–1823. [Google Scholar] [CrossRef]
- Ubizskii, S.B.; Matkovskii, A.O.; Mironova-Ulmane, N.; Skvortsova, V.; Suchocki, A.; Zhydachevskii, Y.A.; Potera, P. Displacement defect formation in complex oxide crystals under irradiation. Phys. Status SolidiAppl. Res. 2000, 177, 349–366. [Google Scholar] [CrossRef]
- Ostafiychuk, B.K.; Fedoriv, V.D.; Yaremiy, I.P.; Garpul, O.Z.; Kurovets, V.V.; Yaremiy, I.C. Implantation of single crystalline iron garnet thin films with He+, B+, and Si+ ions. Phys. Status Solidi Appl. Mater. Sci. 2011, 208, 2108–2114. [Google Scholar] [CrossRef]
- Mathur, M.S.; McKee, J.S.C.; Liu, M.; He, D. Damage induced in materials by ion implantation. Mater. Sci. Eng. 1997, 45, 25–29. [Google Scholar] [CrossRef]
- Klinger, M.I.; Luschik, C.B.; Mashovets, T.V.; Holodar, G.A.; Sheynkman, M.K.; Elango, M.A. Sozdaniedefektov v tverdyihtelahpriraspadeelektronnyihvozbuzhdeniy. Usp. Fiz. Nauk. 1985, 147, 523–558. [Google Scholar] [CrossRef]
- Dvurechenskiy, A.V.; Karanovich, A.A.; Ryibin, A.V. Mehanizmdefektoobrazovaniya v kristallahprineuprugomtormozheniivyisokoenergeticheskihionov. ZhETF 1995, 107, 493–503. [Google Scholar]
- Jasper, E.; Jamison, J.; Pillsbury, T.; Richardella, A.; Samarth, N.; Myers, R.; Valdes Aguilar, R. Terahertz emission spectroscopy of YIG| topological insulator bilayers. In APS March Meeting Abstracts; 2019; Volume 2019, p. E40.011. Available online: https://ui.adsabs.harvard.edu/abs/2019APS..MARE40011J (accessed on 17 September 2022).
- Costantini, J.-M.; Kahn-Harari, A.; Beuneu, F.; Couvreur, F. Thermal annealing study of swift heavy-ion irradiated zirconia. J. Appl. Phys. 2006, 99, 123501. [Google Scholar] [CrossRef]
- Firsov, O.B.; Mashkova, E.S.; Molchanov, V.A.; Snisar, V.A. Small-angle multiple particle scattering in the inverse-square interaction potential approximation. Nucl. Instrum. Methods 1976, 132, 695–702. [Google Scholar] [CrossRef]
- Krivoglaz, M.A. X-ray and Neutron Diffraction in Nonideal Crystals; Springer: Berlin/Heidelberg, Germany, 2012; p. 466. [Google Scholar] [CrossRef]
- Yaremiy, I.; Yaremiy, S.; Povkh, M.; Vlasii, O.; Fedoriv, V.; Lucas, A. X-ray diagnostics of the structure of near surface layers of ion implanted monocrystalline materials. East. Eur. J. Enterp. Technol. 2018, 6, 50–57. [Google Scholar] [CrossRef]
- Ostafiychuk, B.K.; Yaremiy, I.P.; Yaremiy, S.I.; Fedoriv, V.D.; Tomyn, U.O.; Umantsiv, M.M.; Fodchuk, I.M.; Kladko, V.P. Modification of the Crystal Structure of Gadolinium Gallium Garnet by Helium Ion Irradiation. Crystallogr. Rep. 2013, 58, 1017–1022. [Google Scholar] [CrossRef]
- Belozerskii, G.N.; Gitsovich, V.N.; Murin, A.N.; Khimich, Y.P.; Yakovlev, Y.M. Mössbauer Effect in Oriented Slabs of Yttrium Iron Garnet Soviet Physics-Solid State. Sov. Phys. Solid State 1971, 12, 2323–2326. [Google Scholar]
- Vandenberghe, R.E.; De Grave, E.; De Bakker, P.M.A. On the methodology of the analysis of Mössbauer spectra. Hyperfine Interact. 1994, 83, 29–49. [Google Scholar] [CrossRef]
- Komada, H.; Saito, K.; Kohn, K.; Tanaka, M.; Siratori, K.; Kita, E. Mössbauer effect of magnetoelectric Y3Fe5O12 (YIG) single crystal prepared by liquid phase epitaxy. Ferroelectrics 1994, 161, 141–146. [Google Scholar] [CrossRef]








| Sample (Dose, cm−2) | Reflexes | ||
|---|---|---|---|
| (444) | (888) | (880) | |
| D0 (0) | ![]() | ![]() | ![]() |
| D1 (1 × 1014) | ![]() | ![]() | ![]() |
| D2 (2 × 1014) | ![]() | ![]() | ![]() |
| D3 (4 × 1014) | ![]() | ![]() | ![]() |
| Sample | Is, mm/s | Hef, kOe | Vzz × 1021, V/m2 | β,° | ω, mm/s | S, % |
|---|---|---|---|---|---|---|
| a1(θ = 70.86667) | ||||||
| D0 | 0.31 | 486 | 0.423 | 4.33 | 0.36 | 28.8 |
| D1 | 0.33 | 486 | 0.428 | −3.37 | 0.34 | 27.8 |
| D3 | 0.34 | 480 | −0.488 | −17.89 | 0.55 | 22.7 |
| a2(θ = 0) | ||||||
| D0 | 0.32 | 473 | 1.974 | 90.00 | 0.36 | 10.3 |
| D1 | 0.34 | 471 | 4.746 | 62.62 | 0.34 | 9.8 |
| D3 | 0.35 | 453 | 34.408 | 59.84 | 0.55 | 7.6 |
| d1(θ = 54.7333) | ||||||
| D0 | 0.10 | 396 | 4.914 | −49.88 | 0.43 | 29.7 |
| D1 | 0.13 | 397 | 5.265 | −47.43 | 0.38 | 26.8 |
| D3 | 0.16 | 389 | 4.291 | −45.99 | 0.80 | 33.9 |
| d2(θ = 54.7333) | ||||||
| D0 | 0.32 | 383 | −5.244 | −52.02 | 0.468 | 29.4 |
| D1 | 0.37 | 383 | −3.935 | −48.84 | 0.418 | 33.5 |
| D3 | 0.39 | 381 | −7.963 | −42.99 | 0.842 | 27.7 |
| doublet | ||||||
| D0 | 0.285 | – | 2.29 | – | 0.359 | 1.8 |
| D1 | 0.234 | – | 2.28 | – | 0.344 | 2.1 |
| D2 | 0.247 | – | 2.10 | – | 0.554 | 8.1 |
| D3 | 0.24 | – | 2.08 | – | 0.62 | 76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fodchuk, I.; Kotsyubynsky, A.; Velychkovych, A.; Hutsuliak, I.; Boychuk, V.; Kotsyubynsky, V.; Ropyak, L. The Effect of Ne+ Ion Implantation on the Crystal, Magnetic, and Domain Structures of Yttrium Iron Garnet Films. Crystals 2022, 12, 1485. https://doi.org/10.3390/cryst12101485
Fodchuk I, Kotsyubynsky A, Velychkovych A, Hutsuliak I, Boychuk V, Kotsyubynsky V, Ropyak L. The Effect of Ne+ Ion Implantation on the Crystal, Magnetic, and Domain Structures of Yttrium Iron Garnet Films. Crystals. 2022; 12(10):1485. https://doi.org/10.3390/cryst12101485
Chicago/Turabian StyleFodchuk, Igor, Andrij Kotsyubynsky, Andrii Velychkovych, Ivan Hutsuliak, Volodymyra Boychuk, Volodymyr Kotsyubynsky, and Liubomyr Ropyak. 2022. "The Effect of Ne+ Ion Implantation on the Crystal, Magnetic, and Domain Structures of Yttrium Iron Garnet Films" Crystals 12, no. 10: 1485. https://doi.org/10.3390/cryst12101485
APA StyleFodchuk, I., Kotsyubynsky, A., Velychkovych, A., Hutsuliak, I., Boychuk, V., Kotsyubynsky, V., & Ropyak, L. (2022). The Effect of Ne+ Ion Implantation on the Crystal, Magnetic, and Domain Structures of Yttrium Iron Garnet Films. Crystals, 12(10), 1485. https://doi.org/10.3390/cryst12101485













