A Study of Interfacial Electronic Structure at the CuPc/CsPbI2Br Interface
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 56). Prog. Photovolt. Res. Appl. 2020, 28, 629–638. [Google Scholar] [CrossRef]
- Snaith, H.J. Present status and future prospects of perovskite photovoltaics. Nat. Mater. 2018, 17, 372–376. [Google Scholar] [CrossRef]
- Chen, J.Z.; Choy, W.C.H. Efficient and Stable All-Inorganic Perovskite Solar Cells. Sol. RRL 2020, 4. [Google Scholar] [CrossRef]
- Eperon, G.E.; Stranks, S.D.; Menelaou, C.; Johnston, M.B.; Herz, L.M.; Snaith, H.J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982–988. [Google Scholar] [CrossRef]
- Singh, A.; Lai, P.-T.; Mohapatra, A.; Chen, C.-Y.; Lin, H.-W.; Lu, Y.-J.; Chu, C.W. Panchromatic heterojunction solar cells for Pb-free all-inorganic antimony based perovskite. Chem. Eng. J. 2021, 419. [Google Scholar] [CrossRef]
- Usman, M.; Yan, Q. Recent Advancements in Crystalline Pb-Free Halide Double Perovskites. Crystals 2020, 10, 62. [Google Scholar] [CrossRef]
- Walkons, C.; Murshed, R.; Bansal, S. Numerical Analysis of Pb-Free Perovskite Absorber Materials: Prospects and Challenges. Sol. RRL 2020, 4. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, L.; Cheng, J.; Chen, L.; Liu, C.; Yuan, S. Morphologically Controlled Synthesis of Cs2SnCl6 Perovskite Crystals and Their Photoluminescence Activity. Crystals 2019, 9, 258. [Google Scholar] [CrossRef]
- Park, N.G.; Gratzel, M.; Miyasaka, T.; Zhu, K.; Emery, K. Towards stable and commercially available perovskite solar cells. Nat. Energy 2016, 1. [Google Scholar] [CrossRef]
- Boyd, C.C.; Cheacharoen, R.; Leijtens, T.; McGehee, M.D. Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chem. Rev. 2019, 119, 3418–3451. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, D.H.; Kim, H.S.; Seo, S.W.; Cho, S.M.; Park, N.G. Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell. Adv. Energy Mater. 2015, 5. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, X.; Zhou, Y.; Jiang, Q.; Ye, Q.; Chu, Z.; Li, X.; Yang, X.; Yin, Z.; You, J. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat. Commun. 2018, 9, 2225. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, T.Y.; Kan, M.; Li, Y.; Wang, T.; Zhao, Y. Efficient α-CsPbI3 Photovoltaics with Surface Terminated Organic Cations. Joule 2018, 2, 2065–2075. [Google Scholar] [CrossRef]
- Beal, R.E.; Slotcavage, D.J.; Leijtens, T.; Bowring, A.R.; Belisle, R.A.; Nguyen, W.H.; Burkhard, G.; Hoke, E.T.; Mcgehee, M.D. Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. J. Phys. Chem. Lett. 2016, 7, 746. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, V.M. The laws of crystal chemistry. Naturwissenschaften 1926, 14, 477–485. [Google Scholar] [CrossRef]
- Shockley, W.; Queisser, H.J. Detailed Balance Limit of Efficiency of P-N Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- He, J.; Su, J.; Ning, Z.; Ma, J.; Zhou, L.; Lin, Z.; Zhang, J.; Liu, S.; Chang, J.; Hao, Y. Improved Interface Contact for Highly Stable All-Inorganic CsPbI2Br Planar Perovskite Solar Cells. ACS Appl. Energy Mater. 2020, 3, 5173–5181. [Google Scholar] [CrossRef]
- Chen, W.J.; Chen, H.Y.; Xu, G.Y.; Xue, R.M.; Wang, S.; Li, Y.; Li, Y. Precise Control of Crystal Growth for Highly Efficient CsPbI2Br Perovskite Solar Cells. Joule 2019, 3, 191–204. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, H.; Duan, C.Y.; Yang, S.; Yang, Z.; Liu, Z.; Liu, S. Controlled n-Doping in Air-Stable CsPbI2Br Perovskite Solar Cells with a Record Efficiency of 16.79%. Adv. Funct. Mater. 2020, 30, 1909972. [Google Scholar] [CrossRef]
- Zhao, H.; Han, Y.; Xu, Z.; Duan, C.; Yang, S.; Yuan, S.; Yang, Z.; Liu, Z.; Liu, S. A Novel Anion Doping for Stable CsPbI2Br Perovskite Solar Cells with an Efficiency of 15.56% and an Open Circuit Voltage of 1.30 V. Adv. Energy Mater. 2019, 9, 1902279. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, S.M.; Han, Y.; Yuan, S.H.; Jiang, H.; Duan, C.; Liu, Z.; Liu, S. A High Mobility Conjugated Polymer Enables Air and Thermally Stable CsPbI2Br Perovskite Solar Cells with an Efficiency Exceeding 15%. Adv. Mater. Technol. 2019, 4, 1900311. [Google Scholar] [CrossRef]
- Azmi, R.; Lee, C.L.; Jung, I.H.; Jang, S.Y. Simultaneous Improvement in Efficiency and Stability of Low-Temperature-Processed Perovskite Solar Cells by Interfacial Control. Adv. Energy Mater. 2018, 8. [Google Scholar] [CrossRef]
- Heo, J.H.; Lee, M.H.; Han, H.J.; Patil, B.R.; Yu, J.S.; Im, S.H. Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells. J. Mater. Chem. A 2016, 4, 1572–1578. [Google Scholar] [CrossRef]
- Liang, Z.Q.; Zhang, Q.F.; Wiranwetchayan, O.; Xi, J.; Yang, Z.; Park, K.; Li, C.; Cao, G. Effects of the Morphology of a ZnO Buffer Layer on the Photovoltaic Performance of Inverted Polymer Solar Cells. Adv. Funct. Mater. 2012, 22, 2194–2201. [Google Scholar] [CrossRef]
- Sun, Y.M.; Seo, J.H.; Takacs, C.J.; Seifter, J.; Heeger, A.J. Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer. Adv. Mater. 2011, 23, 1679–1683. [Google Scholar] [CrossRef]
- Shen, E.C.; Chen, J.D.; Tian, Y.; Luo, Y.X.; Shen, Y.; Sun, Q.; Jin, T.Y.; Shi, G.Z.; Li, Y.Q.; Tang, J.X. Interfacial Energy Level Tuning for Efficient and Thermostable CsPbI2Br Perovskite Solar Cells. Adv. Sci. 2020, 7, 1901952. [Google Scholar] [CrossRef]
- Chen, S.; Goh, T.W.; Sabba, D.; Chua, J.; Mathews, N.; Huan, C.H.A.; Sum, T.C. Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface. APL Mater. 2014, 2. [Google Scholar] [CrossRef]
- Hanack, M.; Lang, M. Conducting Stacked Metallophthalocyanines and Related Compounds. Adv. Mater. 1994, 6, 819–833. [Google Scholar] [CrossRef]
- Uchida, S.; Xue, J.G.; Rand, B.P.; Forrest, S.R. Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer. Appl. Phys. Lett. 2004, 84, 4218–4220. [Google Scholar] [CrossRef]
- Van Slyke, S.A.; Chen, C.H.; Tang, C.W. Organic electroluminescent devices with improved stability. Appl. Phys. Lett. 1996, 69, 2160–2162. [Google Scholar] [CrossRef]
- Jun, W.; Haibo, W.; Jun, Y.X.; Huang, H.; Yan, D. Organic heterojunction and its application for double channel field-effect transistors. Appl. Phys. Lett. 2005, 87, 093507. [Google Scholar] [CrossRef]
- Zhang, S.S.; Wu, S.H.; Chen, W.T.; Zhu, H.M.; Xiong, Z.Z.; Yang, Z.C.; Chen, C.L.; Chen, R.; Han, L.Y.; Chen, W. Solvent engineering for efficient inverted perovskite solar cells based on inorganic CsPbI2Br light absorber. Mater. Today Energy 2018, 8, 125–133. [Google Scholar] [CrossRef]
- Chen, S.L.; Zhang, T.J.; Liu, X.L.; Qiao, J.L.; Peng, L.; Wang, J.; Liu, Y.S.; Yang, T.Y.; Lin, J. Lattice reconstruction of La-incorporated CsPbI2Br with suppressed phase transition for air-processed all-inorganic perovskite solar cells. J. Mater. Chem. C 2020, 8, 3351–3358. [Google Scholar] [CrossRef]
- Dong, C.; Han, X.X.; Zhao, Y.; Li, J.; Chang, L.; Zhao, W. A Green Anti-Solvent Process for High Performance Carbon-Based CsPbI2Br All-Inorganic Perovskite Solar Cell. Sol. RRL 2018, 2. [Google Scholar] [CrossRef]
- Wang, Q.-K.; Wang, R.-B.; Shen, P.-F.; Li, C.; Li, Y.-Q.; Liu, L.-J.; Duhm, S.; Tang, J.-X. Energy Level Offsets at Lead Halide Perovskite/Organic Hybrid Interfaces and Their Impacts on Charge Separation. Adv. Mater. Interfaces 2015, 2, 1400528. [Google Scholar] [CrossRef]
- Schwieger, T.; Peisert, H.; Golden, M.S.; Knupfer, M.; Fink, J. Electronic structure of the organic semiconductor copper phthalocyanine and K-CuPc studied using photoemission spectroscopy. Phys. Rev. B 2002, 66. [Google Scholar] [CrossRef]
- Dufour, G.; Poncey, C.; Rochet, F.; Roulet, H.; Sacchi, M.; De Santis, M.; De Crescenzi, M. Copper phthalocyanine on Si(111)-7 × 7 and Si(001)-2 × 1 surfaces: An X-ray photoemission spectroscopy and synchrotron X-ray absorption spectroscopy study. Surf. Sci. 1994, 319, 251–266. [Google Scholar] [CrossRef]
- Ottaviano, L.; DiNardo, S.; Lozzi, L.; Passacantando, M.; Picozzi, P.; Santucci, S. Thin and ultra-thin films of nickel phthalocyanine grown on highly oriented pyrolitic graphite: An XPS, UHV-AFM and air tapping-mode AFM study. Surf. Sci. 1997, 373, 318–332. [Google Scholar] [CrossRef]
- Oehzelt, M.; Koch, N.; Heimel, G. Organic semiconductor density of states controls the energy level alignment at electrode interfaces. Nat. Commun. 2014, 5, 4174. [Google Scholar] [CrossRef]
- Oehzelt, M.; Akaike, K.; Koch, N.; Heimel, G. Energy-level alignment at organic heterointerfaces. Sci. Adv. 2015, 1. [Google Scholar] [CrossRef]
- Mariotti, S.; Hutter, O.S.; Phillips, L.J.; Yates, P.J.; Kundu, B.; Durose, K. Stability and Performance of CsPbI2Br Thin Films and Solar Cell Devices. ACS Appl. Mater. Interfaces 2018, 10, 3750–3760. [Google Scholar] [CrossRef] [PubMed]
- Iwashita, M.; Yamanaka, S.; Tsuruta, R.; Tonami, K.; Yoshida, K.; Hayakawa, K.; Cojocaru, L.; Uchida, S.; Mase, K.; Nakayama, Y. Electronic structure of the clean interface between single crystal CH3NH3PbI3 and an organic hole transporting material spiro-OMeTAD. Appl. Phys. Lett. 2020, 116. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, B.; Liu, X.; Han, J.; Ye, H.; Shi, T.; Tang, Z.; Liao, G. Efficient Carbon-Based CsPbBr3 Inorganic Perovskite Solar Cells by Using Cu-Phthalocyanine as Hole Transport Material. Nano-Micro Lett. 2018, 10, 34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, J.; Xie, L.; Lu, X.; Gao, X.; Gao, J.; Shui, L.; Wu, S.; Liu, J.-M. Boosting the performance of low-temperature processed CsPbI2Br planar perovskite solar cells by interface engineering. Dyes Pigment. 2021, 186. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Zhang, Y.; Jiang, J. Theoretical investigation of the molecular, electronic structures and vibrational spectra of a series of first transition metal phthalocyanines. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 67, 1232–1246. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Zhang, L.; Su, Z.; Wang, Z.; Chen, L.; Wang, C.; Xiao, G.; Gao, X. A Study of Interfacial Electronic Structure at the CuPc/CsPbI2Br Interface. Crystals 2021, 11, 547. https://doi.org/10.3390/cryst11050547
Tang Z, Zhang L, Su Z, Wang Z, Chen L, Wang C, Xiao G, Gao X. A Study of Interfacial Electronic Structure at the CuPc/CsPbI2Br Interface. Crystals. 2021; 11(5):547. https://doi.org/10.3390/cryst11050547
Chicago/Turabian StyleTang, Zengguang, Liujiang Zhang, Zhenhuang Su, Zhen Wang, Li Chen, Chenyue Wang, Guoping Xiao, and Xingyu Gao. 2021. "A Study of Interfacial Electronic Structure at the CuPc/CsPbI2Br Interface" Crystals 11, no. 5: 547. https://doi.org/10.3390/cryst11050547
APA StyleTang, Z., Zhang, L., Su, Z., Wang, Z., Chen, L., Wang, C., Xiao, G., & Gao, X. (2021). A Study of Interfacial Electronic Structure at the CuPc/CsPbI2Br Interface. Crystals, 11(5), 547. https://doi.org/10.3390/cryst11050547