The Influence of Recrystallization on Zinc Oxide Microstructures Synthesized with Sol–Gel Method on Scintillating Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of ZnO Films
2.2. Instrumental Analysis
3. Results
3.1. Chemical Composition of Samples
3.2. Topography and Structure
Sample No. | a (Å) | Δa (Å) | c (Å) | Δc (Å) |
---|---|---|---|---|
650_18 | 3.2489 | 0.0007 | 5.2061 | 0.0012 |
800_50 | 3.2499 | 0.0007 | 5.2045 | 0.0009 |
1000_50 | 3.2507 | 0.0009 | 5.2052 | 0.0002 |
3.3. Luminescence Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ZnO | zinc oxide |
XRD | X-ray diffraction |
Eg | energy gap |
MBE | molecular beam epitaxy |
XPS | X-ray photoelectron spectroscopy |
AES | Auger electron spectroscopy |
PL | photoluminescence |
RL | radioluminescence |
ltTL | low-temperature thermoluminescence |
htTL | high-temperature thermoluminescence |
References
- Klingshirn, C.F. ZnO: Material, physics and applications. ChemPhysChem 2007, 8, 782–803. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.; Doğan, S.; Avrutin, V.; Cho, S.-J. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef] [Green Version]
- Mahendran, R.; Kashif, M.; Saroja, M.; Venkatachalam, M.; Sanjeeviraja, C.; Hashim, U. Structural and optical characterization of ZnO thin films annealed at different temperatures. J. Appl. Sci. Res. 2013, 9, 5460–5467. [Google Scholar]
- Rodnyi, P.; Khodyuk, I. Optical and luminescence properties of zinc oxide. Opt. Spectrosc. 2011, 111, 776–785. [Google Scholar] [CrossRef] [Green Version]
- Özgür, Ü.; Hofstetter, D.; Morkoç, H. ZnO Devices and Applications: A Review of Current Status and Future Prospects. Proc. IEEE 2010, 98, 1255–1268. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide-from synthesis to application: A review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [Green Version]
- Yanagida, T.; Fujimoto, Y.; Yamanoi, K.; Kano, M.; Wakamiya, A.; Kurosawa, S.; Sarukura, N. Optical and scintillation properties of bulk ZnO crystal. Phys. Status Solidi C 2012, 9, 2284–2287. [Google Scholar] [CrossRef]
- Ismail, A.; Al Abdullah, J.; Shweikani, R.; Jerby, B. Radioluminescence in ZnO: Effect of chemical modification. J. Optoelectron. Adv. Mater. 2017, 19, 389–394. [Google Scholar]
- Znaidi, L. Sol–gel-deposited ZnO thin films: A review. Mater. Sci. Eng. B 2010, 174, 18–30. [Google Scholar] [CrossRef]
- Hasuike, N.; Harada, T.; Kiyohara, T.; Nishio, K.; Kisoda, K.; Harima, H. Low temperature synthesis of ZnO thin films by spin—coating technique. Phys. Status Solidi C 2011, 8, 506–508. [Google Scholar] [CrossRef]
- Zawadzka, A.; Płóciennik, P.; Strzelecki, J.; Sahraoui, B. Transparent amorphous zinc oxide thin films for NLO applications. Opt. Mater. 2014, 37, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Yoon, H.; Kim, S.-O.; Leem, J.-Y. Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol–gel dip-coating method. Opt. Mater. 2013, 35, 2418–2424. [Google Scholar] [CrossRef]
- Bala, W.; Zorenko, Y.; Savchyn, V.; Voznyak, T.; Paprocki, K.; Popielarski, P.; Szybowicz, M. Optical and electrical properties of ZnO thin films grown by sol-gel method. Solid State Phenom. 2013, 200, 14–21. [Google Scholar] [CrossRef]
- Znaidi, L.; Touam, T.; Vrel, D.; Souded, N.; Ben Yahia, S.; Brinza, O.; Fischer, A.; Boudrioua, A. ZnO thin films synthesized by sol-gel process for photonic applications. Acta Phys. Pol. A 2012, 121, 165–168. [Google Scholar] [CrossRef]
- Sahal, M.; Hartiti, B.; Ridah, A.; Mollar, M.; Mari, B. Structural, electrical and optical properties of ZnO thin films deposited by sol–gel method. Microelectron. J. 2008, 39, 1425–1428. [Google Scholar] [CrossRef]
- Bachman, M. Cleaning Procedures for Silicon Wafers; University of California Irvine: Irvine, CA, USA, 2002. [Google Scholar]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Jenkins, R.; Manne, R.; Robin, R.; Senemaud, C. Nomenclature, symbols, units and their usage in spectrochemical analysis-VIII. Nomenclature system for X-ray spectroscopy (Recommendations 1991). Pure Appl. Chem. 1991, 63, 735–746. [Google Scholar] [CrossRef]
- Haško, D.; Bruncko, J.; Uherek, F. Surface morphology study of recrystallization dynamics of amorphous ZnO layers prepared on different substrates. Appl. Phys. A 2014, 117, 1353–1358. [Google Scholar] [CrossRef]
- Albertsson, J.; Abrahams, S.C.; Kvick, A. Structure and properties (Liquid crystals, polymers, glasses, etc.). Z. Kristallogr. Cryst. Mater. 1988, 185, 526. [Google Scholar] [CrossRef]
- Sowa, H.; Ahsbahs, H. High-pressure X-ray investigation of zincite ZnO single crystals using diamond anvils with an improved shape. J. Appl. Crystallogr. 2006, 39, 169–175. [Google Scholar] [CrossRef]
- Levy, D.; Pavese, A.; Sani, A.; Pischedda, V. Structure and compressibility of synthetic ZnAl2O4 (gahnite) under high-pressure conditions, from synchrotron X-ray powder diffraction. Phys. Chem. Miner. 2001, 28, 612–618. [Google Scholar] [CrossRef]
- Bergman, L.; Chen, X.-B.; Huso, J.; Morrison, J.L.; Hoeck, H. Raman scattering of polar modes of ZnO crystallites. J. Appl. Phys. 2005, 98, 093507. [Google Scholar] [CrossRef]
- Porto, S.P.S.; Krishnan, R.S. Raman effect of corundum. J. Chem. Phys. 1967, 47, 1009–1012. [Google Scholar] [CrossRef]
- Jabri, S.; Souissi, H.; Souissi, A.; Meftah, A.; Sallet, V.; Lusson, A.; Galtier, P.; Oueslati, M. Investigation of the vibrational modes of ZnO grown by MOCVD on different orientation planes. J. Raman Spectrosc. 2015, 46, 251–255. [Google Scholar] [CrossRef]
- Mohaček-Grošev, V.; Vrankić, M.; Maksimović, A.; Mandić, V. Influence of titanium doping on the Raman spectra of nanocrystalline ZnAl2O4. J. Alloys Compd. 2017, 697, 90–95. [Google Scholar] [CrossRef]
- Manjón, F.; Mari, B.; Serrano, J.; Romero, A. Silent Raman modes in zinc oxide and related nitrides. J. Appl. Phys. 2005, 97, 053516. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Zhang, S.; Zhang, C.; Yang, Y.; Lv, K. Raman spectra and microstructure of zinc oxide irradiated with swift heavy ion. Crystals 2019, 9, 395. [Google Scholar] [CrossRef] [Green Version]
- Cuscó, R.; Alarcón-Lladó, E.; Ibanez, J.; Artús, L.; Jiménez, J.; Wang, B.; Callahan, M.J. Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 2007, 75, 165202. [Google Scholar] [CrossRef]
- Raoufi, D. Synthesis and photoluminescence characterization of ZnO nanoparticles. J. Lumin. 2013, 134, 213–219. [Google Scholar] [CrossRef]
- Reshchikov, M.; Moon, Y.; Gu, X.; Nemeth, B.; Nause, J.; Morkoç, H. Unstable luminescence in GaN and ZnO. Phys. B 2006, 376, 715–718. [Google Scholar] [CrossRef]
- Verma, D.; Kole, A.; Kumbhakar, P. Red shift of the band-edge photoluminescence emission and effects of annealing and capping agent on structural and optical properties of ZnO nanoparticles. J. Alloys Compd. 2015, 625, 122–130. [Google Scholar] [CrossRef]
- Grigorjeva, L.; Zolotarjovs, A.; Sokovnin, S.Y.; Millers, D.; Smits, K.; Ilves, V.G. Radioluminescence, thermoluminescence and dosimetric properties of ZnO ceramics. Ceram. Int. 2017, 43, 6187–6191. [Google Scholar] [CrossRef]
- Buryi, M.; Babin, V.; Chang, Y.-Y.; Remeš, Z.; Mičová, J.; Šimek, D. Influence of precursor age on defect states in ZnO nanorods. Appl. Surf. Sci. 2020, 525, 146448. [Google Scholar] [CrossRef]
- Jain, M.; Kumar, R.; Won, S.O.; Chae, K.H.; Vij, A.; Thakur, A. Defect states and kinetic parameter analysis of ZnAl2O4 nanocrystals by X-ray photoelectron spectroscopy and thermoluminescence. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Bos, A.; Dielhof, J. The analysis of thermoluminescent glow peaks in CaF2: Tm (TLD-300). Radiat. Prot. Dosim. 1991, 37, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Sendi, R.K.; Mahmud, S. Quantum size effect on ZnO nanoparticle-based discs synthesized by mechanical milling. Appl. Surf. Sci. 2012, 258, 8026–8031. [Google Scholar] [CrossRef]
- Kisi, E.H.; Elcombe, M.M. u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1989, 45, 1867–1870. [Google Scholar] [CrossRef]
- Branson, D.L. Kinetics and mechanism of the reaction between zinc oxide and aluminum oxide. J. Am. Ceram. Soc. 1965, 48, 591–595. [Google Scholar] [CrossRef]
- Miklaszewski, A.; Garbiec, D.; Niespodziana, K. Sintering behavior and microstructure evolution in cp-titanium processed by spark plasma sintering. Adv. Powder Technol. 2018, 29, 50–57. [Google Scholar] [CrossRef]
- Pal, U.; Meléndrez, R.; Chernov, V.; Barboza-Flores, M. Thermoluminescence properties of ZnO and ZnO:Yb nanophosphors. Appl. Phys. Lett. 2006, 89, 183118. [Google Scholar] [CrossRef]
- Epie, E.N.; Chu, W.K. Ionoluminescence study of Zn− and O− implanted ZnO crystals: An additional perspective. Appl. Surf. Sci. 2016, 371, 28–34. [Google Scholar] [CrossRef]
- Ji, J. Donors and Defects Characterization in ZnO by Luminescence Techniques; Washington State University: Pullman, WA, USA, 2015. [Google Scholar]
- Isik, M.; Gasanly, N.M. Thermoluminescence properties of Al doped ZnO nanoparticles. Ceram. Int. 2018, 44, 13929–13933. [Google Scholar] [CrossRef]
- Isik, M.; Yildirim, T.; Gasanly, N.M. Thermoluminescence properties of ZnO nanoparticles in the temperature range 10–300 K. J. Sol-Gel Sci. Technol. 2016, 78, 76–81. [Google Scholar] [CrossRef]
- Borbón-Nuñez, H.; Cruz-Vázquez, C.; Bernal, R.; Kitis, G.; Furetta, C.; Castaño, V. Thermoluminescence properties of sintered ZnO. Opt. Mater. 2014, 37, 398–403. [Google Scholar] [CrossRef]
- Cruz-Vázquez, C.; Borbón-Nuñez, H.A.; Orante-Barrón, V.R.; Burruel-Ibarra, S.E.; Castaño, V.M.; Bernal, R. Synthesis and Thermoluminescence of New ZnO Phosphors. MRS Online Proc. Library 2011, 1278, 8. [Google Scholar] [CrossRef]
Designation | Number of Layers | Thickness | Annealing Temperature |
---|---|---|---|
650_18 | 18 | 17 μm | 650 °C |
800_50 | 50 | 70 μm | 800 °C |
1000_50 | 50 | 40 μm | 1000 °C |
Sample No. | Zn (at. %) | O (at. %) | C (at. %) |
---|---|---|---|
650_18 | 38.79 ± 4.49 | 55.02 ± 2.64 | 6.18 ± 3.20 |
Sample No. | d100 (Å) | d002 (Å) | d101 (Å) |
---|---|---|---|
650_18 | 2.8144 | 2.6030 | 2.4757 |
800_50 | 2.815 | 2.6022 | 2.4761 |
1000_50 | 2.8158 | 2.6025 | 2.4766 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, E.; Szybowicz, M.; Stachowiak, A.; Piechowiak, D.; Miklaszewski, A.; Witkowski, M.E.; Makowski, M.; Drozdowski, W.; Paprocki, K.; Fabisiak, K.; et al. The Influence of Recrystallization on Zinc Oxide Microstructures Synthesized with Sol–Gel Method on Scintillating Properties. Crystals 2021, 11, 533. https://doi.org/10.3390/cryst11050533
Nowak E, Szybowicz M, Stachowiak A, Piechowiak D, Miklaszewski A, Witkowski ME, Makowski M, Drozdowski W, Paprocki K, Fabisiak K, et al. The Influence of Recrystallization on Zinc Oxide Microstructures Synthesized with Sol–Gel Method on Scintillating Properties. Crystals. 2021; 11(5):533. https://doi.org/10.3390/cryst11050533
Chicago/Turabian StyleNowak, Ewelina, Mirosław Szybowicz, Alicja Stachowiak, Daria Piechowiak, Andrzej Miklaszewski, Marcin E. Witkowski, Michał Makowski, Winicjusz Drozdowski, Kazimierz Paprocki, Kazimierz Fabisiak, and et al. 2021. "The Influence of Recrystallization on Zinc Oxide Microstructures Synthesized with Sol–Gel Method on Scintillating Properties" Crystals 11, no. 5: 533. https://doi.org/10.3390/cryst11050533
APA StyleNowak, E., Szybowicz, M., Stachowiak, A., Piechowiak, D., Miklaszewski, A., Witkowski, M. E., Makowski, M., Drozdowski, W., Paprocki, K., Fabisiak, K., Łoś, S., & Trzcinski, M. (2021). The Influence of Recrystallization on Zinc Oxide Microstructures Synthesized with Sol–Gel Method on Scintillating Properties. Crystals, 11(5), 533. https://doi.org/10.3390/cryst11050533