The Influence of Silicateins on the Shape and Crystalline Habit of Silica Carbonate Biomorphs of Alkaline Earth Metals (Ca, Ba, Sr)
Abstract
1. Introduction
2. Materials and Methods
2.1. Protein Expression and Purification
2.2. Silicatein Activity Assay
2.3. Biomorph Synthesis
2.4. Characterization of Biomorphs
3. Results and Discussion
3.1. Silicatein-α Production
3.2. Calcium Silica Carbonate Biomorphs in the Presence of Silicatein-α
3.3. Barium and Strontiun Silica Carbonate Biomorphs in the Presence of Silicatein-α
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, R.Z.; Addadi, L.; Weiner, S. Design strategies of sea urchin teeth: Structure, composition and micromechanical relations to function. Philos. Trans. R. Soc. B Biol. Sci. 1997, 352, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Herrera, A.L. A New Theory of the Origin and Nature of Life. Science 1942, 96, 14. [Google Scholar] [CrossRef]
- Lillie, R.S.; Johnston, E.N. Precipitation-Structures Simulating Organic Growth. II. A Contribution to the Physico-Chemical Analysis of Growth and Heredity. Biol. Bull. 1919, 36, 225–272. [Google Scholar] [CrossRef]
- Ruiz, J.M.G.; Kubatko, K.-A.H.; Helean, K.B.; Navrotsky, A.; Burns, P.C. Self-Assembled Silica-Carbonate Structures and Detection of Ancient Microfossils. Science 2003, 302, 1194–1197. [Google Scholar] [CrossRef] [PubMed]
- Hyde, S.T.; Carnerup, A.M.; Larsson, A.-K.; Christy, A.G.; García-Ruiz, J.M. Self-assembly of carbonate-silica colloids: Between living and non-living form. Phys. A: Stat. Mech. Its Appl. 2004, 339, 24–33. [Google Scholar] [CrossRef]
- Nakouzi, E.; Knoll, P.; Steinbock, O. Biomorph growth in single-phase systems: Expanding the structure spectrum and pH range. Chem. Commun. 2015, 52, 2107–2110. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Melero-García, E.; Hyde, S.T. Morphogenesis of Self-Assembled Nanocrystalline Materials of Barium Carbonate and Silica. Science 2009, 323, 362–365. [Google Scholar] [CrossRef]
- Noorduin, W.L.; Grinthal, A.; Mahadevan, L.; Aizenberg, J. Rationally Designed Complex, Hierarchical Microarchitectures. Science 2013, 340, 832–837. [Google Scholar] [CrossRef]
- Cuéllar-Cruz, M.; Moreno, A. Synthesis of Crystalline Silica-Carbonate Biomorphs of Ba(II) under the Presence of RNA and Positively and Negatively Charged ITO Electrodes: Obtainment of Graphite via Bioreduction of CO2 and Its Implications to the Chemical Origin of Life on Primitive Earth. ACS Omega 2020, 5, 5460–5469. [Google Scholar] [CrossRef]
- Pérez, K.S.; Moreno, A. Influence of Pyruvic Acid and UV Radiation on the Morphology of Silica-carbonate Crystalline Biomorphs. Crystals 2019, 9, 67. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Nakouzi, E.; Kotopoulou, E.; Tamborrino, L.; Steinbock, O. Biomimetic mineral self-organization from silica-rich spring waters. Sci. Adv. 2017, 3, e1602285. [Google Scholar] [CrossRef] [PubMed]
- Opel, J.; Kellermeier, M.; Sickinger, A.; Morales, J.; Cölfen, H.; Garcia-Ruiz, J.-M. Structural Transition of Inorganic Silica–Carbonate Composites Towards Curved Lifelike Morphologies. Minerals 2018, 8, 75. [Google Scholar] [CrossRef]
- Opel, J.; Wimmer, F.P.; Kellermeier, M.; Cölfen, H. Functionalisation of silica–carbonate biomorphs. Nanoscale Horiz. 2016, 1, 144–149. [Google Scholar] [CrossRef]
- Zhang, G.; Morales, J.; García-Ruiz, J.M. Growth behaviour of silica/carbonate nanocrystalline composites of calcite and aragonite. J. Mater. Chem. B 2017, 5, 1658–1663. [Google Scholar] [CrossRef]
- Kellermeier, M.; Glaab, F.; Carnerup, A.M.; Drechsler, M.; Gossler, B.; Hyde, S.T.; Kunz, W. Additive-induced morphological tuning of self-assembled silica–barium carbonate crystal aggregates. J. Cryst. Growth 2009, 311, 2530–2541. [Google Scholar] [CrossRef]
- Cuéllar-Cruz, M.; Islas, S.R.; Gonzalez, G.; Moreno, A. Influence of Nucleic Acids on the Synthesis of Crystalline Ca(II), Ba(II), and Sr(II) Silica–Carbonate Biomorphs: Implications for the Chemical Origin of Life on Primitive Earth. Cryst. Growth Des. 2019, 19, 4667–4682. [Google Scholar] [CrossRef]
- Elejalde-Cadena, N.R.; Cuéllar-Cruz, M.; Moreno, A. The role of silica and alkaline earth metals with biomolecules in the biomineralization processes: The eggshell’s formation and the crystallization in vivo for x-ray crystallography. Prog. Cryst. Growth Charact. Mater. 2020, 66, 100473. [Google Scholar] [CrossRef]
- Kröger, N.; Deutzmann, R.; Sumper, M. Polycationic Peptides from Diatom Biosilica That Direct Silica Nanosphere Formation. Science 1999, 286, 1129–1132. [Google Scholar] [CrossRef]
- Shimizu, K.; Cha, J.; Stucky, G.D.; Morse, D.E. Silicatein: Cathepsin L-like protein in sponge biosilica. Proc. Natl. Acad. Sci. USA 1998, 95, 6234–6238. [Google Scholar] [CrossRef]
- Shimizu, K.; Amano, T.; Bari, R.; Weaver, J.C.; Arima, J.; Mori, N. Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation. Proc. Natl. Acad. Sci. USA 2015, 112, 11449–11454. [Google Scholar] [CrossRef]
- Gehling, J.G.; Rigby, J.K. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. J. Paleéontol. 1996, 70, 185–195. [Google Scholar] [CrossRef]
- Yin, Z.; Zhu, M.; Davidson, E.H.; Bottjer, D.J.; Zhao, F.; Tafforeau, P. Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. Proc. Natl. Acad. Sci. USA 2015, 112, E1453–E1460. [Google Scholar] [CrossRef]
- Nosenko, T.; Schreiber, F.; Adamska, M.; Adamski, M.; Eitel, M.; Hammel, J.; Maldonado, M.; Müller, W.E.; Nickel, M.; Schierwater, B.; et al. Deep metazoan phylogeny: When different genes tell different stories. Mol. Phylogenet. Evol. 2013, 67, 223–233. [Google Scholar] [CrossRef]
- Van Soest, R.W.M.; Boury-Esnault, N.; Hooper, J.N.A.; Rützler, K.; de Voogd, N.J.; Alvarez, B.; Hajdu, E.; Pisera, A.B.; Manconi, R.; Schönberg, C.; et al. World Porifera Database. Available online: http://www.marinespecies.org/porifera (accessed on 14 April 2021).
- Cha, J.N.; Shimizu, K.; Zhou, Y.; Christiansen, S.C.; Chmelka, B.F.; Stucky, G.D.; Morse, D.E. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl. Acad. Sci. USA 1999, 96, 361–365. [Google Scholar] [CrossRef]
- Müller, W.E.G.; Rothenberger, M.; Boreiko, A.; Tremel, W.; Reiber, A.; Schröder, H.C. Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell Tissue Res. 2005, 321, 285–297. [Google Scholar] [CrossRef]
- Murr, M.M.; Morse, D.E. Fractal intermediates in the self-assembly of silicatein filaments. Proc. Natl. Acad. Sci. USA 2005, 102, 11657–11662. [Google Scholar] [CrossRef]
- Schloßmacher, U.; Wiens, M.; Schröder, H.C.; Jochum, K.P.; Wang, X.; Müller, W.E.G. Silintaphin-1—Interaction with silicatein during structure-guiding bio-silica formation. FEBS J. 2011, 278, 1145–1155. [Google Scholar] [CrossRef]
- Müller, W.E.G.; Schloßmacher, U.; Wang, X.; Boreiko, A.; Brandt, D.; Wolf, S.E.; Tremel, W.; Schröder, H.C. Poly(silicate)-metabolizing silicatein in siliceous spicules and silicasomes of demosponges comprises dual enzymatic activities (silica polymerase and silica esterase). FEBS J. 2007, 275, 362–370. [Google Scholar] [CrossRef]
- Dakhili, S.Y.T.; Caslin, S.A.; Faponle, A.S.; Quayle, P.; De Visser, S.P.; Wong, L.S. Recombinant silicateins as model biocatalysts in organosiloxane chemistry. Proc. Natl. Acad. Sci. USA 2017, 114, E5285–E5291. [Google Scholar] [CrossRef]
- Kisailus, D.; Choi, J.H.; Weaver, J.C.; Yang, W.; Morse, D.E. Enzymatic Synthesis and Nanostructural Control of Gallium Oxide at Low Temperature. Adv. Mater. 2005, 17, 314–318. [Google Scholar] [CrossRef]
- Kisailus, D.; Truong, Q.; Amemiya, Y.; Weaver, J.C.; Morse, D.E. Self-assembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor. Proc. Natl. Acad. Sci. USA 2006, 103, 5652–5657. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.N.; Théato, P.; Müller, W.E.G.; Schröder, H.C.; Borejko, A.; Faiss, S.; Janshoff, A.; Huth, J.; Tremel, W. Formation of layered titania and zirconia catalysed by surface-bound silicatein. Chem. Commun. 2005, 5533–5535. [Google Scholar] [CrossRef]
- Sánchez-Puig, N.; Guerra-Flores, E.; López-Sánchez, F.; Juárez-Espinoza, P.A.; Ruiz-Arellano, R.; González-Muñoz, R.; Arreguin-Espinosa, R.; Moreno, A. Controlling the morphology of silica–carbonate biomorphs using proteins involved in biomineralization. J. Mater. Sci. 2011, 47, 2943–2950. [Google Scholar] [CrossRef]
- Schröder, H.C.; Wang, X.; Manfrin, A.; Yu, S.-H.; Grebenjuk, V.A.; Korzhev, M.; Wiens, M.; Schlossmacher, U.; Müller, W.E. Acquisition of Structure-guiding and Structure-forming Properties during Maturation from the Pro-silicatein to the Silicatein Form. J. Biol. Chem. 2012, 287, 22196–22205. [Google Scholar] [CrossRef]
- Simpson, T.L.; Volcani, B.E. Silicon and Siliceous Structures in Biological Systems; Springer: Berlin/Heidelberg, Germany, 1981; p. 587. [Google Scholar]
- Voronkov, M.G.; Zelchan, G.I.; Lukevits, E.J. Silicon and Life; Zinatne Publishing: Vilnius, Lithuania, 1977. [Google Scholar]
- Ruiz-Arellano, R.R.; Moreno, A. Obtainment of Spherical-Shaped Calcite Crystals Induced by Intramineral Proteins Isolated from Eggshells of Ostrich and Emu. Cryst. Growth Des. 2014, 14, 5137–5143. [Google Scholar] [CrossRef]
- De La Pierre, M.; Carteret, C.; Maschio, L.; André, E.; Orlando, R.; Dovesi, R. The Raman spectrum of CaCO3polymorphs calcite and aragonite: A combined experimental and computational study. J. Chem. Phys. 2014, 140, 164509. [Google Scholar] [CrossRef]
- Reyes-Grajeda, J.P.; Moreno, A.; Romero, A. Crystal Structure of Ovocleidin-17, a Major Protein of the Calcified Gallus gallus Eggshell. J. Biol. Chem. 2004, 279, 40876–40881. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Li, X. Uncovering Aragonite Nanoparticle Self-assembly in Nacre—A Natural Armor. Cryst. Growth Des. 2012, 12, 4306–4310. [Google Scholar] [CrossRef]
- García-Ruiz, J.; Amorós, J. Morphological aspects of some symmetrical crystal aggregates grown by silica gel technique. J. Cryst. Growth 1981, 55, 379–383. [Google Scholar] [CrossRef]
- Schopf, J.W. Solution to Darwin’s dilemma: Discovery of the missing Precambrian record of life. Proc. Natl. Acad. Sci. USA 2000, 97, 6947–6953. [Google Scholar] [CrossRef] [PubMed]
- De Stefano, M.; Marino, D. Morphology and taxonomy of Amphicocconeisgen. nov. (Achnanthales, Bacillariophyceae, Bacillariophyta) with considerations on its relationship to other monoraphid diatom genera. Eur. J. Phycol. 2003, 38, 361–370. [Google Scholar] [CrossRef][Green Version]
- Pamirsky, I.E.; Golokhvast, K.S. Silaffins of Diatoms: From Applied Biotechnology to Biomedicine. Mar. Drugs 2013, 11, 3155–3167. [Google Scholar] [CrossRef]
- Krishnamurti, D. The Raman spectra of aragonite, strontianite and witherite. Proc. Indian Acad. Sci.—Sect. A 1960, 51, 285–295. [Google Scholar] [CrossRef]
- Görlich, S.; Samuel, A.J.; Best, R.J.; Seidel, R.; Vacelet, J.; Leonarski, F.K.; Tomizaki, T.; Rellinghaus, B.; Pohl, D.; Zlotnikov, I. Natural hybrid silica/protein superstructure at atomic resolution. Proc. Natl. Acad. Sci. USA 2020, 117, 31088–31093. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Puig, N.; Cuéllar-Cruz, M.; Islas, S.R.; Tapia-Vieyra, J.V.; Arreguín-Espinosa, R.A.; Moreno, A. The Influence of Silicateins on the Shape and Crystalline Habit of Silica Carbonate Biomorphs of Alkaline Earth Metals (Ca, Ba, Sr). Crystals 2021, 11, 438. https://doi.org/10.3390/cryst11040438
Sánchez-Puig N, Cuéllar-Cruz M, Islas SR, Tapia-Vieyra JV, Arreguín-Espinosa RA, Moreno A. The Influence of Silicateins on the Shape and Crystalline Habit of Silica Carbonate Biomorphs of Alkaline Earth Metals (Ca, Ba, Sr). Crystals. 2021; 11(4):438. https://doi.org/10.3390/cryst11040438
Chicago/Turabian StyleSánchez-Puig, Nuria, Mayra Cuéllar-Cruz, Selene R. Islas, Juana V. Tapia-Vieyra, Roberto A. Arreguín-Espinosa, and Abel Moreno. 2021. "The Influence of Silicateins on the Shape and Crystalline Habit of Silica Carbonate Biomorphs of Alkaline Earth Metals (Ca, Ba, Sr)" Crystals 11, no. 4: 438. https://doi.org/10.3390/cryst11040438
APA StyleSánchez-Puig, N., Cuéllar-Cruz, M., Islas, S. R., Tapia-Vieyra, J. V., Arreguín-Espinosa, R. A., & Moreno, A. (2021). The Influence of Silicateins on the Shape and Crystalline Habit of Silica Carbonate Biomorphs of Alkaline Earth Metals (Ca, Ba, Sr). Crystals, 11(4), 438. https://doi.org/10.3390/cryst11040438