Microwave Irradiation to Produce High Performance Thermoelectric Material Based on Al Doped ZnO Nanostructures
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Properties
3.2. Thermoelectric Properties
3.3. Power Measurements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dresselhaus, M.S.; Chen, G.; Tang, M.Y.; Yang, R.G.; Lee, H.; Wang, D.Z.; Ren, Z.F.; Fleurial, J.-P.; Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053. [Google Scholar] [CrossRef]
- Backhaus-Ricoult, M.; Rustad, J.; Moore, L.; Smith, C.; Brown, J. Semiconducting large bandgap oxides as potential thermoelectric materials for high-temperature power generation? Appl. Phys. A 2014, 116, 433–470. [Google Scholar] [CrossRef]
- Hébert, S.; Berthebaud, D.; Daou, R.; Bréard, Y.; Pelloquin, D.; Guilmeau, E.; Gascoin, F.; Lebedev, O.; Maignan, A. Searching for new thermoelectric materials: Some examples among oxides, sulfides and selenides. J. Phys. Condens. Matter. 2015, 28, 013001. [Google Scholar] [CrossRef]
- Weintraub, B.; Zhou, Z.; Li, Y.; Deng, Y. Solution synthesis of one-dimensional ZnO nanomaterials and their applications. Nanoscale 2010, 2, 1573–1587. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. New insights into the role of native point defects in ZnO. J. Cryst. Growth 2006, 287, 58–65. [Google Scholar] [CrossRef]
- Jood, P.; Mehta, R.J.; Zhang, Y.; Peleckis, G.; Wang, X.; Siegel, R.W.; Borca-Tasciuc, T.; Dou, S.X.; Ramanath, G. Al-Doped Zinc Oxide nanocomposites with enhanced thermoelectric properties. Nano Lett. 2011, 11, 4337–4342. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.-M.; Choi, Y.-J.; Yeom, G.Y.; Park, H.-H. Thickness-dependent growth orientation of F-doped ZnO films formed by atomic layer deposition. J. Vac. Sci. Technol. A 2016, 34, 01A144. [Google Scholar] [CrossRef]
- Liu, Y.; Lian, J. Optical and electrical properties of aluminum-doped ZnO thin films grown by pulsed laser deposition. Appl. Surf. Sci. 2007, 253, 3727–3730. [Google Scholar] [CrossRef]
- Mickan, M.; Helmersson, U.; Rinnert, H.; Ghanbaja, J.; Muller, D.; Horwat, D. Room temperature deposition of homogeneous, highly transparent and conductive Al-doped ZnO films by reactive high power impulse magnetron sputtering. Sol. Energy Mater. Sol. Cells 2016, 157, 742–749. [Google Scholar] [CrossRef]
- Vettumperumal, R.; Kalyanaraman, S.; Thangavel, R. Photoconductive UV detectors based heterostructures of Cd and Mg doped ZnO sol gel thin films. Mater. Chem. Phys. 2014, 145, 237–242. [Google Scholar] [CrossRef]
- Park, K.C.; Ma, D.Y.; Kim, K.H. The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering. Thin Solid Films 1997, 305, 201–209. [Google Scholar] [CrossRef]
- Salah, N.; Al-Shawafi, W.M.; Alshahrie, A.; Baghdadi, N.; Soliman, Y.M.; Memic, A. Size controlled, antimicrobial ZnO nanostructures produced by the microwave assisted route. Mater. Sci. Eng. C 2019, 99, 1164–1173. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Lee, K.E.; Hahn, S.H.; Kim, E.J.; Kim, S.; Chung, J.S.; Shin, E.W.; Park, C. Optical and photoluminescent properties of sol-gel Al-doped ZnO thin films. Mater. Lett. 2007, 61, 1118–1121. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Xu, Q.; Fang, G. Preparation and characterization of Al doped ZnO thin films by sol–gel process. J. Alloys Compd. 2012, 542, 151–156. [Google Scholar] [CrossRef]
- Mote, V.D.; Purushotham, Y.; Dole, B.N. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 2012, 6, 6. [Google Scholar] [CrossRef]
- Park, K.; Ko, K.Y. Effect of TiO2 on high-temperature thermoelectric properties of ZnO. J. Alloys Compd. 2007, 430, 200–204. [Google Scholar] [CrossRef]
- Ohtaki, M.; Tsubota, T.; Eguchi, K. Thermoelectric properties of oxide solid solutions based on Al-doped ZnO; Proceedings ICT98 (Cat. No.98TH8365). In Proceedings of the Seventeenth International Conference on Thermoelectrics, Piscataway, NJ, USA, 24–28 May 1998; pp. 610–613. [Google Scholar]
- Shirouzu, K.; Ohkusa, T.; Hotta, M.; Enomoto, N.; Hojo, J. Distribution and solubility limit of Al in Al2O3-doped ZnO sintered body. J. Ceram. Soc. Jpn. 2007, 115, 254–258. [Google Scholar] [CrossRef]
- Hong, M.-H.; Choi, H.; Shim, D.I.; Cho, H.H.; Kim, J.; Park, H.-H. Study of the effect of stress/strain of mesoporous Al-doped ZnO thin films on thermoelectric properties. Solid State Sci. 2018, 82, 84–91. [Google Scholar] [CrossRef]
- Mallika, A.; RamachandraReddy, A.; SowriBabu, K.; Reddy, K.V. Synthesis and optical characterization of aluminum doped ZnO nanoparticles. Ceram. Int. 2014, 40, 12171–12177. [Google Scholar] [CrossRef]
- Shao, C.-L.; Guan, H.-Y.; Wen, S.-B.; Chen, B.; Han, D.-X.; Gong, J.; Yang, X.-H.; Liu, Y.-C. Preparation and characterization of NiO nanofibers via an electrospinning technique. Chem. J. Chin. Univ. Chin. Ed. 2004, 25, 1015–1017. [Google Scholar]
- Yogamalar, N.R.; Bose, A.C. Absorption–emission study of hydrothermally grown Al: ZnO nanostructures. J. Alloys Compd. 2011, 509, 8493–8500. [Google Scholar] [CrossRef]
- Jule, L.; Dejene, F.; Ali, A.G.; Roro, K.; Mwakikunga, B. Defect-induced room temperature ferromagnetic properties of the Al-doped and undoped ZnO rod-like nanostructure. Mater. Lett. 2017, 199, 151–155. [Google Scholar] [CrossRef]
- Decremps, F.; Pellicer-Porres, J.; Saitta, A.M.; Chervin, J.-C.; Polian, A. High-pressure Raman spectroscopy study of wurtzite ZnO. Phys. Rev. B 2002, 65, 092101. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Zhuo, R.; Yan, D.; Feng, J.; Zhang, F.; Yan, P. The effect of Al doping on the morphology and optical property of ZnO nanostructures prepared by hydrothermal process. Appl. Surf. Sci. 2009, 255, 3959–3964. [Google Scholar] [CrossRef]
- Hong, W.S. Reaction Sintering of ZnO-Al2O3. Master’s Thesis, University of California, Berkeley, CA, USA, May 1991. [Google Scholar]
- Lindsay, J.R.; Rose, H.J.; Swartz, W.E.; Watts, P.H.; Rayburn, K.A. X-ray photoelectron spectra of aluminum oxides: Structural effects on the “chemical shift”. Appl. Spectrosc. 1973, 27, 1–5. [Google Scholar] [CrossRef]
- Nefedov, V.; Firsov, M.; Shaplygin, I. Electronic structures of MRhO2, MRh2O4, RhMO4 and Rh2MO6 on the basis of X-ray spectroscopy and ESCA data. J. Electron. Spectrosc. Relat. Phenom. 1982, 26, 65–78. [Google Scholar] [CrossRef]
- Bai, S.; Guo, T.; Zhao, Y.; Luo, R.; Li, D.; Chen, A.; Liu, C.C. Mechanism enhancing gas sensing and first-principle calculations of Al-doped ZnO nanostructures. J. Mater. Chem. A 2013, 1, 11335–11342. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Kong, Y.; Zhou, J.; Wu, J.; Wu, X.; Qin, W.; Jiao, Z.; Jiang, L. Non-fluorinated superhydrophobic and micro/nano hierarchical Al doped ZnO film: The effect of Al doping on morphological and hydrophobic properties. RSC Adv. 2015, 5, 81024–81029. [Google Scholar] [CrossRef]
- Uma, K.; Rusop, M.; Soga, T.; Jimbo, T. Effects of Al content on Zn0.95Mg0.05O thin films deposited by sol–gel spin coating. Jpn. J. Appl. Phys. 2007, 46, 40. [Google Scholar] [CrossRef]
- Kinemuchi, Y.; Ito, C.; Kaga, H.; Aoki, T.; Watari, K. Thermoelectricity of Al-doped ZnO at different carrier concentrations. J. Mater. Res. 2007, 22, 1942–1946. [Google Scholar] [CrossRef]
- Mondarte, E.A.; Copa, V.; Tuico, A.; Vergara, C.J.; Estacio, E.; Salvador, A.; Somintac, A. Al-doped ZnO and N-doped CuxO thermoelectric thin films for self-powering integrated devices. Mater. Sci. Semicond. Process. 2016, 45, 27–31. [Google Scholar] [CrossRef]
- Cheng, H.; Xu, X.; Hng, H.; Ma, J. Characterization of Al-doped ZnO thermoelectric materials prepared by RF plasma powder processing and hot press sintering. Ceram. Int. 2009, 35, 3067–3072. [Google Scholar] [CrossRef]
- Ohtaki, M.; Araki, K.; Yamamoto, K. High thermoelectric performance of dually doped ZnO ceramics. J. Electron. Mater. 2009, 38, 1234–1238. [Google Scholar] [CrossRef]
- Cai, K.; Müller, E.; Drašar, C.; Mrotzek, A. Preparation and thermoelectric properties of Al-doped ZnO ceramics. Mater. Sci. Eng. B 2003, 104, 45–48. [Google Scholar] [CrossRef]
- Zhou, H.M.; Yi, D.Q.; Yu, Z.M.; Xiao, L.R.; Li, J. Preparation of aluminum doped zinc oxide films and the study of their microstructure, electrical and optical properties. Thin Solid Films 2007, 515, 6909–6914. [Google Scholar] [CrossRef]
- Fujishiro, Y.; Miyata, M.; Awano, M.; Maeda, K. Effect of microstructural control on thermoelectric properties of hot-pressed Aluminum-Doped Zinc Oxide. J. Am. Ceram. Soc. 2003, 86, 2063–2066. [Google Scholar] [CrossRef]
- Katsuyama, S.; Takagi, Y.; Ito, M.; Majima, K.; Nagai, H.; Sakai, H.; Yoshimura, K.; Kosuge, K. Thermoelectric properties of (Zn1−yMgy)1−xAlxO ceramics prepared by the polymerized complex method. J. Appl. Phys. 2002, 92, 1391–1398. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 11. [Google Scholar] [CrossRef]
- Tsubota, T.; Ohtaki, M.; Eguchi, K.; Arai, H. Thermoelectric properties of Al-doped ZnO as a promising oxidematerial for high-temperature thermoelectric conversion. J. Mater. Chem. 1997, 7, 85–90. [Google Scholar] [CrossRef]
- Sugahara, T.; Ohtaki, M.; Souma, T. Fabrication and power generation characteristics of p-NaCo2O4/n-ZnO oxide thermoelectric modules. In Proceedings of the 25th International Conference on Thermoelectrics, Vienna, Austria, 6–10 August 2006. [Google Scholar]
- Kulsi, C.; Dhara, P.; Mitra, M.; Kargupta, K.; Ganguly, S.; Banerjee, D. Effect of solvent on nanostructure and thermoelectric properties of bismuth. Indian J. Phys. 2016, 90, 557–562. [Google Scholar] [CrossRef]
- Ghosh, T.; Bardhan, M.; Bhattacharya, M.; Satpati, B. Study of inelastic mean free path of metal nanostructures using energy filtered transmission electron microscopy imaging. J. Microsc. 2015, 258, 253–258. [Google Scholar] [CrossRef] [PubMed]
Materials | Lattice Constant Parameter (Å) | Crystallite Size | |||
---|---|---|---|---|---|
a | b | c | c/a | ||
Un-doped ZnO NPs | 3.249 | 3.249 | 5.208 | 1.603 | 18.7 nm |
ZnO:Al NPs (0.5 mol %) | 3.232 | 3.232 | 5.178 | 1.602 | 23.5 nm |
ZnO:Al NPs (1 mol %) | 3.236 | 3.236 | 5.186 | 1.602 | 27.6 nm |
ZnO:Al NPs (2 mol %) | 3.234 | 3.234 | 5.184 | 1.603 | 24.1 nm |
ZnO:Al NSs (3 mol %) | 3.238 | 3.238 | 5.179 | 1.600 | 17.6 nm |
Element | Weight% | Atomic% |
---|---|---|
C K | 11.97 | 30.04 |
O K | 19.62 | 36.96 |
Al K | 2.22 | 2.48 |
Zn | 66.18 | 30.51 |
Materials | Temperature (°C) | Thermal Conductivity (W/m·K) | Specific Heat (J/K·Kg) | Thermal Diffusivity (m2·s−1) |
---|---|---|---|---|
Pure ZnO NSs | R.T. * | 2.7 | 0.36 | 0.029 |
400 | 4.3 | 0.94 | 0.013 | |
ZnO Al 0.5% Al | R.T. * | 2.8 | 0.34 | 0.021 |
400 | 4.8 | 1.96 | 0.010 | |
ZnO Al 1% Al | R.T. * | 1.7 | 0.35 | 0.020 |
400 | 3.5 | 1.28 | 0.011 | |
ZnO Al 2% Al | R.T. * | 0.97 | 0.34 | 0.012 |
400 | 2.1 | 0.84 | 0.010 | |
ZnO Al 3% Al | R.T. * | 0.92 | 0.31 | 0.010 |
400 | 1.22 | 0.57 | 0.006 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baghdadi, N.; Salah, N.; Alshahrie, A.; Koumoto, K. Microwave Irradiation to Produce High Performance Thermoelectric Material Based on Al Doped ZnO Nanostructures. Crystals 2020, 10, 610. https://doi.org/10.3390/cryst10070610
Baghdadi N, Salah N, Alshahrie A, Koumoto K. Microwave Irradiation to Produce High Performance Thermoelectric Material Based on Al Doped ZnO Nanostructures. Crystals. 2020; 10(7):610. https://doi.org/10.3390/cryst10070610
Chicago/Turabian StyleBaghdadi, Neazar, Numan Salah, Ahmed Alshahrie, and Kunihito Koumoto. 2020. "Microwave Irradiation to Produce High Performance Thermoelectric Material Based on Al Doped ZnO Nanostructures" Crystals 10, no. 7: 610. https://doi.org/10.3390/cryst10070610
APA StyleBaghdadi, N., Salah, N., Alshahrie, A., & Koumoto, K. (2020). Microwave Irradiation to Produce High Performance Thermoelectric Material Based on Al Doped ZnO Nanostructures. Crystals, 10(7), 610. https://doi.org/10.3390/cryst10070610