Microstructure and Mechanical Strength of Attritor-Milled and Spark Plasma Sintered Mg-4Y-3Nd Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure
3.2. Mechanical Properties
4. Discussion
5. Conclusions
- -
- The milling had a significant effect on the powder particles size and morphology. A change in both these parameters resulted from severe fragmentation and cold-welding, the extent of which increased with the increasing milling time.
- -
- Severe plastic deformation imposed to the powder resulted in a significant grain size refinement in the sintered samples when compared to the ones sintered from gas-atomized powder. Nevertheless, relatively large grains were observed in the samples consolidated from 1.5 h milled powder, whereas almost uniform (ultra)fine-grained microstructure was observed in the samples sintered from the 5 h milled powder.
- -
- Microstructural changes imposed by the milling had a strong effect on the mechanical properties of the consolidated samples. Both CYS and UCS were significantly affected, especially by the grain size refinement, residual strain, secondary phase particles, and porosity.
- -
- Mechanical properties of the samples sintered from 1.5 h milled powder exhibited pronounced anisotropy. On the other hand, compacts of the 5 h milled powder showed comparable CYS and UCS when deformed along two mutually perpendicular directions.
- -
- The attritor-milling for 5 h was found to be very effective for increasing CYS, especially for sintering temperatures exceeding 450 °C, whereas UCS did not exceed the values measured in the samples sintered from the gas-atomized powder.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Janeček, M.; Yi, S.; Král, R.; Vrátná, J.; Kainer, K.U. Texture and microstructure evolution in ultrafine-grained AZ31 processed by EX-ECAP. J. Mater. Sci. 2010, 45, 4665–4671. [Google Scholar] [CrossRef]
- Manière, C.; Torresani, E.; Olevsky, E.A. Simultaneous Spark Plasma Sintering of Multiple Complex Shapes. Materials 2019, 12, 557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alias, J.; Harun, W.S.W.; Ayu, H.M. A Review on the Preparation of Magnesium-Based Alloys Prepared by Powder Metallurgy and the Evolution of Microstructure and Mechanical Properties. Key Eng. Mater. 2019, 796, 3–10. [Google Scholar] [CrossRef]
- Kim, K.R.; Ahn, J.W.; Kim, G.-H.; Han, J.H.; Cho, K.K.; Roh, J.-S.; Kim, W.J.; Kim, H.S. Corrosion behavior of magnesium powder fabricated by high-energy ball milling and spark plasma sintering. Met. Mater. Int. 2014, 20, 1095–1101. [Google Scholar] [CrossRef]
- Hwang, S.; Nishimura, C.; McCormick, P.G. Mechanical milling of magnesium powder. Mater. Sci. Eng. A 2001, 318, 22–33. [Google Scholar] [CrossRef]
- Minárik, P.; Zemková, M.; Kozlík, J.; Lukáč, F.; Král, R. Effect of flake-like powder morphology on the microstructure and texture in Mg-Al-RE alloy. Mater. Lett. 2020, 262, 127031. [Google Scholar] [CrossRef]
- Mordike, B.L. Creep-resistant magnesium alloys. Mater. Sci. Eng. A. 2002, 324, 103–112. [Google Scholar] [CrossRef]
- Kubásek, J.; Dvorský, D.; Čavojský, M.; Roudnická, M.; Vojtěch, D. WE43 magnesium alloy-material for challenging applications. Kov. Mater. 2019, 57, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Knapek, M.; Minárik, P.; Čapek, J.; Král, R.; Kubásek, J.; Chmelík, F. Corrosion of pure magnesium and a WE43 magnesium alloy studied by advanced acoustic emission analysis. Corros. Sci. 2018, 145, 10–15. [Google Scholar] [CrossRef]
- Krause, A.; von der Höh, N.; Bormann, D.; Krause, C.; Bach, F.-W.; Windhagen, H.; Meyer-Lindenberg, A. Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae. J. Mater. Sci. 2010, 45, 624–632. [Google Scholar] [CrossRef]
- Soderlind, J.; Cihova, M.; Schäublin, R.; Risbud, S.; Löffler, J.F. Towards refining microstructures of biodegradable magnesium alloy WE43 by spark plasma sintering. Acta Biomater. 2019, 98, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Dvorsky, D.; Kubasek, J.; Vojtěch, D.; Prusa, F.; Nova, K. Preparation of WE43 using powder metallurgy route. Manuf. Technol. 2016, 16, 680–687. [Google Scholar] [CrossRef]
- Dvorsky, D.; Kubasek, J.; Jablonska, E.; Kaufmanova, J.; Vojtech, D. Mechanical, corrosion and biological properties of advanced biodegradable Mg–MgF2 and WE43-MgF2 composite materials prepared by spark plasma sintering. J. Alloys Compd. 2020, 825, 154016. [Google Scholar] [CrossRef]
- Minárik, P.; Zemková, M.; Lukáč, F.; Bohlen, J.; Knapek, M.; Král, R. Microstructure of the novel biomedical Mg–4Y–3Nd alloy prepared by spark plasma sintering. J. Alloys Compd. 2020, 819, 153008. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, L.; Zhang, D.; Beyerlein, I.J.; Mahajan, S.; Rupert, T.J.; Lavernia, E.J.; Schoenung, J.M. Reversed compressive yield anisotropy in magnesium with microlaminated structure. Acta Mater. 2018, 146, 12–24. [Google Scholar] [CrossRef]
- Nie, J.-F. Precipitation and Hardening in Magnesium Alloys. Metall. Mater. Trans. A. 2012, 43, 3891–3939. [Google Scholar] [CrossRef] [Green Version]
- Just, A.; Yang, M. Attrition Dry Milling in Continuous and Batch Modes. In Proceedings of the The Powder and Bulk Solids Conference/Exhibition, Chicago, IL, USA, 6–8 October 1997; p. 4. [Google Scholar]
- Minárik, P.; Stráský, J.; Veselý, J.; Lukáč, F.; Hadzima, B.; Král, R. AE42 magnesium alloy prepared by spark plasma sintering. J. Alloys Compd. 2018, 742, 172–179. [Google Scholar] [CrossRef]
- Minárik, P.; Král, R.; Čížek, J.; Chmelík, F. Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP. Acta Mater. 2016, 107, 83–95. [Google Scholar] [CrossRef]
- Hall, E.O. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Soc. Sect. B 1951, 64, 747–753. [Google Scholar] [CrossRef]
- Huang, X.; Hansen, N.; Tsuji, N. Hardening by Annealing and Softening by Deformation in Nanostructured Metals. Science 2006, 312, 249–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Powder Condition | Sintering Temperature | |||
---|---|---|---|---|
400 °C | 450 °C | 500 °C | 550 °C | |
gas-atomized | 0.4(1) | 0.3(1) | <0.1 | <0.1 |
1.5 h milled | 1.1(3) | 0.9(1) | 0.5(1) | 0.6(1) |
5 h milled | 1.0(5) | 0.6(4) | 0.3(1) | 0.2(1) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zemková, M.; Minárik, P.; Knapek, M.; Šašek, S.; Dittrich, J.; Král, R. Microstructure and Mechanical Strength of Attritor-Milled and Spark Plasma Sintered Mg-4Y-3Nd Alloy. Crystals 2020, 10, 574. https://doi.org/10.3390/cryst10070574
Zemková M, Minárik P, Knapek M, Šašek S, Dittrich J, Král R. Microstructure and Mechanical Strength of Attritor-Milled and Spark Plasma Sintered Mg-4Y-3Nd Alloy. Crystals. 2020; 10(7):574. https://doi.org/10.3390/cryst10070574
Chicago/Turabian StyleZemková, Mária, Peter Minárik, Michal Knapek, Stanislav Šašek, Jan Dittrich, and Robert Král. 2020. "Microstructure and Mechanical Strength of Attritor-Milled and Spark Plasma Sintered Mg-4Y-3Nd Alloy" Crystals 10, no. 7: 574. https://doi.org/10.3390/cryst10070574
APA StyleZemková, M., Minárik, P., Knapek, M., Šašek, S., Dittrich, J., & Král, R. (2020). Microstructure and Mechanical Strength of Attritor-Milled and Spark Plasma Sintered Mg-4Y-3Nd Alloy. Crystals, 10(7), 574. https://doi.org/10.3390/cryst10070574