Magnetic Phase Transition, Elastic and Thermodynamic Properties of L12-(Ni,Cu)3(Al,Fe,Cr) in 3d High-Entropy Alloys
Abstract
1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Phase Stability
3.2. Elastic Properties
3.3. Thermodynamic Properties and Magnetic Phase Transition
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362. [Google Scholar] [CrossRef]
- Laplanche, G.; Berglund, S.; Reinhart, C.; Kostka, A.; George, E.P. Phase stability and kinetics of σ-phase precipitation in CrMnFeCoNi high-entropy alloys. Acta Mater. 2018, 161, 338–351. [Google Scholar] [CrossRef]
- Fu, Z.; Chen, W.; Wen, H.; Zhang, D.; Chen, Z.; Zheng, B.; Zhou, Y.; Lavernia, E. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 2016, 107, 59–71. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Zhang, Y.; Wang, Y.L.; Chen, G.L. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 2007, 90, 253–256. [Google Scholar] [CrossRef]
- Shon, Y.; Joshi, S.S.; Katakam, S.; Rajamure, R.S.; Dahotre, N.B. Laser additive synthesis of high entropy alloy coating on aluminum: Corrosion behavior. Mater. Lett. 2015, 142, 122–125. [Google Scholar] [CrossRef]
- Senkov, O.N.; Scott, J.M.; Senkova, S.V.; Miracle, D.B.; Woodward, C.F. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 2011, 509, 6043–6048. [Google Scholar] [CrossRef]
- Yong, D.; Lu, Y.; Li, J.; Wang, T.; Li, T. Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys. Intermetallics 2014, 52, 105–109. [Google Scholar]
- Gwalani, B.; Soni, V.; Choudhuri, D.; Lee, M.; Hwang, J.Y.; Nam, S.J.; Ryu, H.; Hong, S.H.; Banerjee, R. Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys—Al0.3CoFeCrNi and Al0.3CuFeCrNi2. Scripta Mater. 2016, 123, 130–134. [Google Scholar] [CrossRef]
- Liu, S.; Cao, P.; Lin, D.; Tian, F. Stability of L21 (NiM)2TiAl (M = Co, Fe) in high-entropy alloys. J. Alloys Compd. 2018, 764, 650–655. [Google Scholar] [CrossRef]
- Choudhuri, D.; Alam, T.; Borkar, T.; Gwalani, B.; Mantri, A.S.; Srinivasan, S.G.; Gibson, M.A.; Banerjee, R. Formation of a Huesler-like L2 1 phase in a CoCrCuFeNiAlTi high-entropy alloy. Scripta Mater. 2015, 100, 36–39. [Google Scholar] [CrossRef]
- Vitos, L. Total-energy method based on the exact muffin-tin orbitals theory. Phys. Rev. B Condens. Matter 2001, 64, 167–173. [Google Scholar] [CrossRef]
- Vitos, L.; Skriver, H.L.; Johansson, B.; Kollár, J. Application of the exact muffin-tin orbitals theory: The spherical cell approximation. Comput. Mater Sci. 2012, 18, 24–38. [Google Scholar] [CrossRef]
- Vitos, L.; Abrikosov, I.A.; Johansson, B. Anisotropic lattice distortions in random alloys from first-principles theory. Phys. Rev. Lett. 2001, 87, 156401. [Google Scholar] [CrossRef]
- Otero-De-La-Roza, A.; Abbasi-Pérez, D.; Luaña, V. GIBBS2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 2011, 182, 2232–2248. [Google Scholar] [CrossRef]
- Tian, F.; Delczeg, L.; Chen, N.; Varga, L.K.; Shen, J.; Vitos, J. Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory. Phys. Rev. B 2013, 88, 1336–1340. [Google Scholar] [CrossRef]
- Tian, F.; Varga, L.K.; Chen, N.; Shen, J.; Vitos, L. Ab initio design of elastically isotropic TiZrNbMoVx high-entropy alloys. J. Alloys Compd. 2014, 599, 19–25. [Google Scholar] [CrossRef]
- Cao, P.; Ni, X.; Tian, F.; Varga, L.K.; Vitos, L. Ab initio study of Al x MoNbTiV high-entropy alloys. J. Phys. Condens. Matter 2015, 27, 075401. [Google Scholar] [CrossRef]
- Vitos, L. Computational Quantum Mechanics for Materials Engineers; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Perdew, P.J.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Korzhavyi, P.A.; Ruban, A.V.; Abrikosov, I.A.; Skriver, H.L. Madelung energy for random metallic alloys in the coherent potential approximation. Phys. Rev. B 1995, 51, 5773–5776. [Google Scholar] [CrossRef]
- Staunton, J.; Gyorffy, B.L.; Pindor, A.J.; Stocks, G.M.; Winter, H. The “disordered local moment” picture of itinerant magnetism at finite temperatures. J. Magn. Magn. Mater. 1984, 45, 15–22. [Google Scholar] [CrossRef]
- Li, X.; Schönecker, S.; Zhao, J.; Johansson, B.; Vitos, L. Elastic properties of Fe–Mn random alloys studied by ab initio calculations. J. Alloys Compd. 2007, 91, 3124–3161. [Google Scholar]
- Tian, F.; Varga, L.K.; Chen, N.; Delczeg, L.; Vitos, L. Ab initio investigation of high-entropy alloys of 3d elements. Phys. Rev. B 2013, 87, 178–187. [Google Scholar] [CrossRef]
- Birch, F. Finite Strain Isotherm and Velocities for Single Crystal and Polycrystalline NaCl at High Pressure and 300 K. J. Geophys. Res. 1978, 83, 1257–1268. [Google Scholar] [CrossRef]
- Mattesini, M.; Ahuja, R.; Johansson, B. Cubic Hf3N4 and Zr3N4: A class of hard materials. Phys. Rev. B 2003, 68, 184108. [Google Scholar] [CrossRef]
- Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. 1952, 65, 349–354. [Google Scholar] [CrossRef]
- Huang, B.; Duan, Y.H.; Sun, Y.; Peng, M.J.; Chen, S. Electronic structures, mechanical and thermodynamic properties of cubic alkaline-earth hexaborides from first principles calculations. J. Alloys Compd. 2015, 635, 213–224. [Google Scholar] [CrossRef]
- Chouhan, S.S.; Pagare, G.; Rajagopalan, M.; Sanyal, S.P. First principles study of structural, electronic, elastic and thermal properties of YX (X = Cd, In, Au, Hg and Tl) intermetallics. Solid State Sci. 2012, 14, 1004–1011. [Google Scholar] [CrossRef]
- Ivanovskii, A.L. Mechanical and electronic properties of diborides of transition 3d–5d metals from first principles: Toward search of novel ultra-incompressible and superhard materials. Prog. Mater. Sci. 2012, 57, 184–228. [Google Scholar] [CrossRef]
- Teter, D.M. Computational Alchemy: The Search for New Superhard Materials. MRS Bull. 1998, 23, 22–27. [Google Scholar] [CrossRef]
- Wei, Z.; Bao, D.L.; Ping, L.; Duan, Y. Elastic Anisotropies and Thermal Properties of Cubic TMIr (TM = Sc, Y, Lu, Ti, Zr and Hf): A DFT Calculation. Mater. Res. Express 2019, 6, 086574. [Google Scholar]
- Pugh, S.F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 2009, 45, 823–843. [Google Scholar] [CrossRef]
- Lu, Z.W.; Zhou, D.W.; Bai, J.P.; Lu, C.; Zhong, Z.G.; Li, G.Q. Theoretical investigation on structural and thermodynamic properties of the intermetallic compound in Mg–Zn–Ag alloy under high pressure and high temperature. J. Alloys Compd. 2013, 550, 406–411. [Google Scholar] [CrossRef]
- Iota, V.; Klepeis, J.H.P.; Yoo, C.S.; Lang, J.; Srajer, G. Electronic structure and magnetism in compressed 3d transition metals. Appl. Phys. Lett. 2007, 90, 1560. [Google Scholar] [CrossRef]
- Tracy, C.L.; Park, S.; Rittman, D.R.; Zinkle, S.J.; Bei, H.; Lang, M.; Ewing, R.C.; Mao, W.L. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 2017, 8, 15634. [Google Scholar] [CrossRef]
C11 | C12 | C44 | B | G | E | v | G/B | C12−C44 | |
---|---|---|---|---|---|---|---|---|---|
PM | 213.7 | 166.4 | 118.3 | 182.2 | 80.5 | 210.4 | 0.308 | 0.44 | 48.1 |
FM | 187.8 | 141.5 | 118.9 | 156.9 | 85.6 | 206.4 | 0.281 | 0.55 | 22.6 |
AFM | 193.9 | 148.1 | 128.0 | 163.4 | 86.0 | 219.4 | 0.276 | 0.52 | 20.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Wang, Z.-P.; Huang, G.-H.; Huang, J.-L.; Tang, P.-Y.; Fan, T.-W. Magnetic Phase Transition, Elastic and Thermodynamic Properties of L12-(Ni,Cu)3(Al,Fe,Cr) in 3d High-Entropy Alloys. Crystals 2020, 10, 1102. https://doi.org/10.3390/cryst10121102
Ma L, Wang Z-P, Huang G-H, Huang J-L, Tang P-Y, Fan T-W. Magnetic Phase Transition, Elastic and Thermodynamic Properties of L12-(Ni,Cu)3(Al,Fe,Cr) in 3d High-Entropy Alloys. Crystals. 2020; 10(12):1102. https://doi.org/10.3390/cryst10121102
Chicago/Turabian StyleMa, Li, Zhi-Peng Wang, Guo-Hua Huang, Jin-Li Huang, Ping-Ying Tang, and Tou-Wen Fan. 2020. "Magnetic Phase Transition, Elastic and Thermodynamic Properties of L12-(Ni,Cu)3(Al,Fe,Cr) in 3d High-Entropy Alloys" Crystals 10, no. 12: 1102. https://doi.org/10.3390/cryst10121102
APA StyleMa, L., Wang, Z.-P., Huang, G.-H., Huang, J.-L., Tang, P.-Y., & Fan, T.-W. (2020). Magnetic Phase Transition, Elastic and Thermodynamic Properties of L12-(Ni,Cu)3(Al,Fe,Cr) in 3d High-Entropy Alloys. Crystals, 10(12), 1102. https://doi.org/10.3390/cryst10121102