Solvothermally Doping NiS2 Nanoparticles on Carbon with Ferric Ions for Efficient Oxygen Evolution Catalysis
Abstract
1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Chemicals and Reagents
3.2. Synthesis
3.2.1. Synthesis of Ni-MOFs
3.2.2. Synthesis of NiS2 and Fe-NiS2/C-X
3.3. Material Characterization
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Gray, H.B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 122. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.S.; Nocera, D.G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhang, M.; Yuan, W.; Shi, G. A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation. J. Mater. Chem. A 2015, 3, 6921–6928. [Google Scholar] [CrossRef]
- Tahir, M.; Pan, L.; Idrees, F.; Zhang, X.; Wang, L.; Zou, J.-J.; Wang, Z.L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136–157. [Google Scholar] [CrossRef]
- Tang, C.; Asiri, A.M.; Sun, X. Highly-active oxygen evolution electrocatalyzed by a Fe-doped NiSe nanoflake array electrode. Chem. Commun. 2016, 52, 4529–4532. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhang, M.; Chen, J.; Li, Y.; Shi, G. Nitrogen and Sulfur Codoped Graphite Foam as a Self-Supported Metal-Free Electrocatalytic Electrode for Water Oxidation. Adv. Energy Mater. 2016, 6, 1501492. [Google Scholar] [CrossRef]
- Gao, W.-K.; Qin, J.-F.; Wang, K.; Yan, K.-L.; Liu, Z.-Z.; Lin, J.-H.; Chai, Y.-M.; Liu, C.-G.; Dong, B. Facile synthesis of Fe-doped Co9S8 nano-microspheres grown on nickel foam for efficient oxygen evolution reaction. Appl. Surf. Sci. 2018, 454, 46–53. [Google Scholar] [CrossRef]
- Chen, J.S.; Ren, J.; Shalom, M.; Fellinger, T.; Antonietti, M. Stainless Steel Mesh-Supported NiS Nanosheet Array as Highly Efficient Catalyst for Oxygen Evolution Reaction. ACS Appl. Mater. Inter. 2016, 8, 5509–5516. [Google Scholar] [CrossRef]
- Yang, L.; Gao, M.; Dai, B.; Guo, X.; Liu, Z.; Peng, B. An efficient NiS@N/S-C hybrid oxygen evolution electrocatalyst derived from metal-organic framework. Electrochim. Acta. 2016, 191, 813–820. [Google Scholar] [CrossRef]
- Stelmachowski, P.; Monteverde Videla, A.H.A.; Ciura, K.; Specchia, S. Oxygen evolution catalysis in alkaline conditions over hard templated nickel-cobalt based spinel oxides. Int. J. Hydrogen Energy. 2017, 42, 27910–27918. [Google Scholar] [CrossRef]
- Monteverde Videla, A.H.A.; Stelmachowski, P.; Ercolino, G.; Specchia, S. Benchmark comparison of Co3O4 spinel-structured oxides with different morphologies for oxygen evolution reaction under alkaline conditions. J. Appl. Electrochem. 2017, 47, 295–304. [Google Scholar] [CrossRef]
- Fominykh, K.; Feckl, J.M.; Sicklinger, J.; Döblinger, M.; Böcklein, S.; Ziegler, J.; Peter, L.; Rathousky, J.; Scheidt, E.-W.; Bein, T.; et al. Ultrasmall Dispersible Crystalline Nickel Oxide Nanoparticles as High-Performance Catalysts for Electrochemical Water Splitting. Adv. Funct. Mater. 2014, 24, 3123–3129. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, T.; Jiang, K.; Da, P.; Peng, Z.; Tang, J.; Kong, B.; Cai, W.-B.; Yang, Z.; Zheng, G. Reduced Mesoporous Co3O4 Nanowires as Efficient Water Oxidation Electrocatalysts and Supercapacitor Electrodes. Adv. Energy.Mater. 2014, 4, 1400696. [Google Scholar] [CrossRef]
- Hao, J.; Yang, W.; Hou, J.; Mao, B.; Huang, Z.; Shi, W. Nitrogen doped NiS2 nanoarrays with enhanced electrocatalytic activity for water oxidation. J. Mater. Chem. A 2017, 5, 17811–17816. [Google Scholar] [CrossRef]
- Ma, X.; Ma, M.; Liu, D.; Hao, S.; Qu, F.; Du, G.; Asiri, A.M.; Sun, X. Core-Shell-Structured NiS2@Ni-Bi Nanoarray for Efficient Water Oxidation at Near-Neutral pH. ChemCatChem 2017, 9, 3138–3143. [Google Scholar] [CrossRef]
- Xiao, X.; Huang, D.; Fu, Y.; Wen, M.; Jiang, X.; Lv, X.; Li, M.; Gao, L.; Liu, S.; Wang, M.; et al. Engineering NiS/Ni2P Heterostructures for Efficient Electrocatalytic Water Splitting. ACS Appl. Mater. Inter. 2018, 10, 4689–4696. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Trotochaud, L.; Burke, M.S.; Boettcher, S.W. Contributions to activity enhancement via Fe incorporation in Ni-(oxy)hydroxide/borate catalysts for near-neutral pH oxygen evolution. Chem. Commun. 2015, 51, 5261–5263. [Google Scholar] [CrossRef] [PubMed]
- Anantharaj, S.; Karthik, P.E.; Kundu, S. Petal-like hierarchical array of ultrathin Ni(OH)2 nanosheets decorated with Ni(OH)2 nanoburls: A highly efficient OER electrocatalyst. Catal. Scie. Technol. 2017, 7, 882–893. [Google Scholar] [CrossRef]
- Han, L.; Yu, X.Y.; Lou, X.W. Formation of Prussian-Blue-Analog Nanocages via a Direct Etching Method and their Conversion into Ni-Co-Mixed Oxide for Enhanced Oxygen Evolution. Adv. Mater. 2016, 28, 4601–4605. [Google Scholar] [CrossRef]
- Xu, Y.; Tu, W.; Zhang, B.; Yin, S.; Huang, Y.; Kraft, M.; Xu, R. Nickel Nanoparticles Encapsulated in Few-Layer Nitrogen-Doped Graphene Derived from Metal-Organic Frameworks as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Adv. Mater. 2017, 29, 1605957. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Ye, P.; Ning, W.; Wu, S.; Li, X.; Zhu, Y.A.; Tao, L. Nanocrystalline NiS Particles Synthesized by Mechanical Alloying As a Promising Oxygen Evolution Electrocatalyst. Mater. Lett. 2018, 218, 115–118. [Google Scholar] [CrossRef]
- Thangasamy, P.; Maruthapandian, V.; Saraswathy, V.; Sathish, M. Supercritical fluid processing for the synthesis of NiS2 nanostructures as efficient electrocatalysts for electrochemical oxygen evolution reactions. Catal. Sci. Technol. 2017, 7, 3591–3597. [Google Scholar] [CrossRef]
- Li, X.; Shang, X.; Rao, Y.; Dong, B.; Han, G.-Q.; Hu, W.-H.; Liu, Y.-R.; Yan, K.-L.; Chi, J.-Q.; Chai, Y.-M.; et al. Tuning crystal phase of NiSx through electro-oxidized nickel foam: A novel route for preparing efficient electrocatalysts for oxygen evolution reaction. Appl. Surf. Sci. 2017, 396, 1034–1043. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, L.; Xu, G.; Zhang, C.; Song, H.; He, Y.; Zhang, C.; Jia, D. Facile synthesis of NiS hierarchical hollow cubes via Ni formate frameworks for high performance supercapacitors. Chem. Eng. J. 2017, 320, 22–28. [Google Scholar] [CrossRef]
- Shang, X.; Yan, K.-L.; Lu, S.-S.; Dong, B.; Gao, W.-K.; Chi, J.-Q.; Liu, Z.-Z.; Chai, Y.-M.; Liu, C.-G. Controlling electrodeposited ultrathin amorphous Fe hydroxides film on V-doped nickel sulfide nanowires as efficient electrocatalyst for water oxidation. J. Power Sources 2017, 363, 44–53. [Google Scholar] [CrossRef]
- Zhao, X.; Shang, X.; Quan, Y.; Dong, B.; Han, G.-Q.; Li, X.; Liu, Y.-R.; Chen, Q.; Chai, Y.-M.; Liu, C.-G. Electrodeposition-Solvothermal Access to Ternary Mixed Metal Ni-Co-Fe Sulfides for Highly Efficient Electrocatalytic Water Oxidation in Alkaline Media. Electrochim. Acta. 2017, 230, 151–159. [Google Scholar] [CrossRef]
- Wang, N.; Li, L.; Zhao, D.; Kang, X.; Tang, Z.; Chen, S. Graphene Composites with Cobalt Sulfide: Efficient Trifunctional Electrocatalysts for Oxygen Reversible Catalysis and Hydrogen Production in the Same Electrolyte. Small 2017, 13, 1701025. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, L.; Chen, Z.; Zhong, L.; Zhao, D.; Chi, X.; Zhao, X.; Li, L.; Lu, X.; Leng, K.; et al. Hierachically Porous Carbon Plates Derived from Wood as Bifunctional ORR/OER Electrodes. Adv. Mater. 2019, 16, 1900341. [Google Scholar] [CrossRef]
- Wang, H.F.; Tang, C.; Li, B.Q.; Zhang, Q. A review of anion regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis. Inorg. Chem. Front. 2018, 5, 521–534. [Google Scholar] [CrossRef]
- Dong, B.; Zhao, X.; Han, G.-Q.; Li, X.; Shang, X.; Liu, Y.-R.; Hu, W.-H.; Chai, Y.-M.; Zhao, H.; Liu, C.-G. Two-step synthesis of binary Ni–Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2016, 4, 13499–13508. [Google Scholar] [CrossRef]
- Wu, T.; Zhu, X.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. Vapor-phase hydrothermal growth of single crystalline NiS2 nanostructure film on carbon fiber cloth for electrocatalytic oxidation of alcohols to ketones and simultaneous H2 evolution. Nano Res. 2018, 11, 1004–1017. [Google Scholar] [CrossRef]
- Luo, P.; Zhang, H.; Liu, L.; Zhang, Y.; Deng, J.; Xu, C.; Hu, N.; Wang, Y. Targeted Synthesis of Unique Nickel Sulfide (NiS, NiS2) Microarchitectures and the Applications for the Enhanced Water Splitting System. ACS Appl. Mater. Inter. 2017, 9, 2500–2508. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Sun, W.; Lv, L.P.; Jin, F.; Yong, W. MOF-templated nanorice–nanosheet core–satellite iron dichalcogenides by heterogeneous sulfuration for high-performance lithium ion batteries. J. Mater. Chem. A 2016, 4, 19179–19188. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, A.; Ding, L.; Zhou, Z.; Wang, Y.; Niu, S.; Liang, S.; Cao, G. Nitrogen-Doped Yolk-Shell Structured CoSe/C Dodecahedra for High-Performance Sodium-Ion Batteries. ACS Appl. Mater. Inter. 2017, 9, 3624–3633. [Google Scholar] [CrossRef]
- Xu, N.; Zhang, Y.; Zhang, T.; Liu, Y.; Qiao, J. Efficient quantum dots anchored nanocomposite for highly active ORR/OER electrocatalyst of advanced metal-air batteries. Nano Energy 2019, 57, 176–185. [Google Scholar] [CrossRef]
- Zhang, K.; Xia, X.; Deng, S.; Zhong, Y.; Xie, D.; Pan, G.; Wu, J.; Liu, Q.; Wang, X.; Tu, J. Nitrogen-Doped Sponge Ni Fibers as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Nano-Micro Lett. 2019, 11, 21. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, X.; Wang, T.; Xiao, W.; Xi, P.; Wang, J.; Gao, D.; Wang, J. Bimetallic Nickel Cobalt Sulfide as Efficient Electrocatalyst for Zn–Air Battery and Water Splitting. Nano-Micro Lett. 2019, 11, 2. [Google Scholar] [CrossRef]
Catalyst | BET Specific Surface Area (m2/g) | Predominant Pore Size (nm) | C at% | O at% | S at% | Ni at% | Fe at% | N at% |
---|---|---|---|---|---|---|---|---|
NiS2/C | 107 | 4~10 | 33.71 | 47.83 | 9.84 | 6.61 | / | 2.01 |
Fe-NiS2/C-10 | 141 | 5~6 | 56.02 | 32.19 | 5.67 | 2.36 | 1.65 | 2.11 |
Fe-NiS2/C-30 | 158 | 2~5 | 49.12 | 28.65 | 11.05 | 5.16 | 2.45 | 3.57 |
Fe-NiS2/C-50 | 150 | 4~8 | 44.13 | 34.10 | 11.89 | 4.32 | 3.35 | 2.21 |
Catalyst | Loading (mg/cm2) | Potential a (V vs. RHE) | Tafel slope (mV/dec) | EIS (ohm) | Cdl (mF/cm2) | Ref. |
---|---|---|---|---|---|---|
NiS2/C | 0.414 | 1.594 | 82.22 | 125.44 | 1.38 | This work |
Fe-NiS2/C-10 | 0.414 | 1.526 | 87.2 | 32.29 | 1.53 | |
Fe-NiS2/C-30 | 0.414 | 1.486 | 45.66 | 16.27 | 1.69 | |
Fe-NiS2/C-50 | 0.414 | 1.611 | 87.18 | 59.87 | 1.35 | |
RuO2 | 0.414 | 1.550 | 65.53 | / | / | |
NiS@SLS b | / | 1.520 | 47 | 3.4 | 0.6 | [8] |
NiS | / | 1.580 | 116 | / | / | [21] |
β-Ni(OH)2 | 0.205 | 1.530 | 43 | / | / | [18] |
Ni-Co c | / | 1.610 | 50 | / | / | [19] |
NiFe2O4/CNTs | 0.100 | 1.680 | 50 | / | / | [35] |
Ni (N-SN) | / | 1.595 d | 33 | / | 44.5 | [36] |
(Ni,Co)S2 | / | 1.500 | 58 | 3.0 | 41.0 | [37] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, L.; Zhao, D.; Dai, J.; Wu, Z.; Li, L. Solvothermally Doping NiS2 Nanoparticles on Carbon with Ferric Ions for Efficient Oxygen Evolution Catalysis. Catalysts 2019, 9, 458. https://doi.org/10.3390/catal9050458
Xie L, Zhao D, Dai J, Wu Z, Li L. Solvothermally Doping NiS2 Nanoparticles on Carbon with Ferric Ions for Efficient Oxygen Evolution Catalysis. Catalysts. 2019; 9(5):458. https://doi.org/10.3390/catal9050458
Chicago/Turabian StyleXie, Lihong, Dengke Zhao, Jiale Dai, Zexing Wu, and Ligui Li. 2019. "Solvothermally Doping NiS2 Nanoparticles on Carbon with Ferric Ions for Efficient Oxygen Evolution Catalysis" Catalysts 9, no. 5: 458. https://doi.org/10.3390/catal9050458
APA StyleXie, L., Zhao, D., Dai, J., Wu, Z., & Li, L. (2019). Solvothermally Doping NiS2 Nanoparticles on Carbon with Ferric Ions for Efficient Oxygen Evolution Catalysis. Catalysts, 9(5), 458. https://doi.org/10.3390/catal9050458