Ball Milling-Assisted Synthesis of Ultrasmall Ruthenium Phosphide for Efficient Hydrogen Evolution Reaction
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Material Characterization
3.3. Electrochemical Test
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sivula, K.; Van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 2016, 1, 15010. [Google Scholar] [CrossRef]
- Cox, K.E.; Williamson, K.D. Hydrogen: Its Technology and Implication: Production Technology; CRC Press: Boca Raton, FL, USA, 2018; p. 4. [Google Scholar]
- Cao, L.; Luo, Q.; Liu, W.; Lin, Y.; Liu, X.; Cao, Y.; Zhang, W.; Wu, Y.; Yang, J.; Yao, T.; et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141. [Google Scholar] [CrossRef]
- Zheng, Y.R.; Wu, P.; Gao, M.R.; Zhang, X.L.; Gao, F.Y.; Ju, H.X.; Wu, R.; Gao, Q.; You, R.; Huang, W.X.; et al. Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nat. Commun. 2018, 9, 2533. [Google Scholar] [CrossRef] [PubMed]
- Dinh, C.T.; Jain, A.; de Arquer, F.P.G.; De Luna, P.; Li, J.; Wang, N.; Zheng, X.; Cai, J.; Gregory, B.Z.; Voznyy, O.; et al. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat. Energy 2019, 4, 107–114. [Google Scholar] [CrossRef]
- Wang, X.S.; Zhu, Y.H.; Vasileff, A.; Jiao, Y.; Chen, S.M.; Song, L.; Zheng, B.; Zheng, Y.; Qiao, S.Z. Strain Effect in Bimetallic Electrocatalysts in the Hydrogen Evolution Reaction. ACS Energy Lett. 2018, 3, 1198–1204. [Google Scholar] [CrossRef]
- Kagkoura, A.; Tzanidis, I.; Dracopoulos, V.; Tagmatarchis, N.; Tasis, D. Template synthesis of defect-rich MoS2-based assemblies as electrocatalytic platforms for hydrogen evolution reaction. Chem. Commun. 2019, 55, 2078–2081. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S.Z. The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts. Angew. Chem. Int. Ed. 2018, 57, 7568–7579. [Google Scholar] [CrossRef] [PubMed]
- Li, T.F.; Liu, J.J.; Song, Y.; Wang, F. Photochemical Solid-Phase Synthesis of Platinum Single Atoms on Nitrogen-Doped Carbon with High Loading as Bifunctional Catalysts for Hydrogen Evolution and Oxygen Reduction Reactions. ACS Catal. 2018, 8, 8450–8458. [Google Scholar] [CrossRef]
- Xiang, Z.P.; Deng, H.Q.; Peljo, P.; Fu, Z.Y.; Wang, S.L.; Mandler, D.; Sun, G.Q.; Liang, Z.X. Electrochemical Dynamics of a Single Platinum Nanoparticle Collision Event for the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2018, 57, 3464–3468. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Li, Y.; Wang, Y.M.; Ge, J.J.; Liu, C.P.; Xing, W. Enhanced electrocatalytic performance for the hydrogen evolution reaction through surface enrichment of platinum nanoclusters alloying with ruthenium in situ embedded in carbon. Energy Environ. Sci. 2018, 11, 1232–1239. [Google Scholar] [CrossRef]
- Nong, S.Y.; Dong, W.J.; Yin, J.W.; Dong, B.W.; Lu, Y.; Yuan, X.T.; Wang, X.; Bu, K.J.; Chen, M.Y.; Jiang, S.D.; et al. Well-Dispersed Ruthenium in Mesoporous Crystal TiO2 as an Advanced Electrocatalyst for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2018, 140, 5719–5727. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.T.; Zhang, L.A.; Qin, Y.; Chu, F.Q.; Kong, Y.; Tao, Y.X.; Li, Y.X.; Bu, Y.F.; Ding, D.; Liu, M.L. Crystallinity Dependence of Ruthenium Nanocatalyst toward Hydrogen Evolution Reaction. ACS Catal. 2018, 8, 5714–5720. [Google Scholar] [CrossRef]
- Wang, Z.L.; Sun, K.J.; Henzie, J.; Hao, X.F.; Li, C.L.; Takei, T.; Kang, Y.-M.; Yamauchi, Y. Spatially Confined Assembly of Monodisperse Ruthenium Nanoclusters in a Hierarchically Ordered Carbon Electrode for Efficient Hydrogen Evolution. Angew. Chem. Int. Ed. 2018, 57, 5848–5852. [Google Scholar] [CrossRef] [PubMed]
- Su, J.W.; Yang, Y.; Xia, G.L.; Chen, J.T.; Jiang, P.; Chen, Q.W. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 8, 14969. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.T.; Feng, B.M.; Wu, X.J.; Niu, Y.L.; Hu, W.H.; Li, C.M. Ru2P Nanoparticle Decorated P/N-Doped Carbon Nanofibers on Carbon Cloth as a Robust Hierarchical Electrocatalyst with Platinum-Comparable Activity toward Hydrogen Evolution. ACS Appl. Energy Mater. 2018, 1, 3143–3150. [Google Scholar] [CrossRef]
- Chang, Q.B.; Ma, J.W.; Zhu, Y.Z.; Li, Z.; Xu, D.Y.; Duan, X.Z.; Peng, W.C.; Li, Y.; Zhang, G.L.; Zhang, F.B.; et al. Controllable Synthesis of Ruthenium Phosphides (RuP and RuP2) for pH-Universal Hydrogen Evolution Reaction. ACS Sustain. Chem. Eng. 2018, 6, 6388–6394. [Google Scholar] [CrossRef]
- Yu, J.; Guo, Y.N.; She, S.X.; Miao, S.S.; Ni, M.; Zhou, W.; Liu, M.L.; Shao, Z.P. Bigger is Surprisingly Better: Agglomerates of Larger RuP Nanoparticles Outperform Benchmark Pt Nanocatalysts for the Hydrogen Evolution Reaction. Adv. Mater. 2018, 30, 1800047. [Google Scholar] [CrossRef] [PubMed]
- Pu, Z.H.; Amiinu, I.S.; Kou, Z.K.; Li, W.Q.; Mu, S.C. RuP2-Based Catalysts with Platinum-like Activity and Higher Durability for the Hydrogen Evolution Reaction at All pH Values. Angew. Chem. Int. Ed. 2017, 56, 11559–11564. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.T.; Wang, S.; Zhang, Q.J.; Chen, L.; Hu, W.H.; Li, C.M. Ultrasmall Ru2P nanoparticles on graphene: A highly efficient hydrogen evolution reaction electrocatalyst in both acidic and alkaline media. Chem. Commun. 2018, 54, 3343–3346. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Z.; Liu, H.; Suen, N.-T.; Yu, X.; Feng, L.G. Electrochemical Hydrogen Evolution Reaction Efficiently Catalyzed by Ru2P Nanoparticles. ChemSusChem 2018, 11, 2724–2729. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Sang, X.H.; Unocic, R.R.; Kinch, R.T.; Liu, X.F.; Hu, J.; Liu, H.L.; Dai, S. Mechanochemical-Assisted Synthesis of High-Entropy Metal Nitride via a Soft Urea Strategy. Adv. Mater. 2018, 30, 1707512. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.H.; Jiang, H.L.; Zhu, Y.H.; Yang, X.L.; Shen, J.H.; Zou, W.J.; Chen, J.D.; Li, C.Z. Enriched graphitic N-doped carbon-supported Fe3O4 nanoparticles as efficient electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 7281–7287. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Jaramillo, T.F. Molybdenum Phosphosulfide: An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2014, 53, 14433–14437. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.J. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 2015, 47, 1072–1079. [Google Scholar] [CrossRef]
- Srivastava, V. Functionalized Hydrotalcite Tethered Ruthenium Catalyst for Carbon Sequestration Reaction. Catal. Lett. 2018, 148, 1879–1892. [Google Scholar] [CrossRef]
- Niu, Y.; Huang, X.; Hu, W. Fe3C nanoparticle decorated Fe/N doped graphene for efficient oxygen reduction reaction electrocatalysis. J. Power Sources 2016, 332, 305–311. [Google Scholar] [CrossRef]
- Chi, J.Q.; Gao, W.K.; Lin, J.H.; Dong, B.; Yan, K.L.; Qin, J.F.; Liu, B.; Chai, Y.M.; Liu, C.G. Hydrogen Evolution Activity of Ruthenium Phosphides Encapsulated in Nitrogen- and Phosphorous-Codoped Hollow Carbon Nanospheres. ChemSusChem 2018, 11, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Huang, J.; Wang, X.; Gao, T.; Zhang, Y.; Yao, T.; Song, B. Ruthenium Incorporated Cobalt Phosphide Nanocubes Derived From a Prussian Blue Analog for Enhanced Hydrogen Evolution. Front. Chem. 2018, 6, 521. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Wang, Y.; Wang, Z.W.; Zhu, Z.H.; Wang, J.L.; Luo, Z.M.; Zhang, C.; Huang, X.; Zhang, H.; Huang, W. Ru nanodendrites composed of ultrathin fcc/hcp nanoblades for the hydrogen evolution reaction in alkaline solutions. Chem. Commun. 2018, 54, 4613–4616. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.L.; Zhu, Y.H.; Su, Y.H.; Yao, Y.F.; Liu, Y.Y.; Yang, X.L.; Li, C.Z. Highly dual-doped multilayer nanoporous graphene: Efficient metal-free electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 12642–12645. [Google Scholar] [CrossRef]
- Deng, J.; Ren, P.J.; Deng, D.H.; Yu, L.; Yang, F.; Bao, X.H. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 1919–1923. [Google Scholar] [CrossRef]
- Chung, D.Y.; Jun, S.W.; Yoon, G.; Kim, H.; Yoo, J.M.; Lee, K.-S.; Kim, T.; Shin, H.; Sinha, A.K.; Kwon, S.G.; et al. Large-Scale Synthesis of Carbon-Shell-Coated FeP Nanoparticles for Robust Hydrogen Evolution Reaction Electrocatalyst. J. Am. Chem. Soc. 2017, 139, 6669–6674. [Google Scholar] [CrossRef] [PubMed]
- Jing, S.Y.; Lu, J.J.; Yu, G.T.; Yin, S.B.; Luo, L.; Zhang, Z.S.; Ma, Y.F.; Chen, W.; Shen, P.K. Carbon-Encapsulated WOx Hybrids as Efficient Catalysts for Hydrogen Evolution. Adv. Mater. 2018, 30, 1705979. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Guo, Y.; Zhan, W.; Jin, T. Ball Milling-Assisted Synthesis of Ultrasmall Ruthenium Phosphide for Efficient Hydrogen Evolution Reaction. Catalysts 2019, 9, 240. https://doi.org/10.3390/catal9030240
Liu X, Guo Y, Zhan W, Jin T. Ball Milling-Assisted Synthesis of Ultrasmall Ruthenium Phosphide for Efficient Hydrogen Evolution Reaction. Catalysts. 2019; 9(3):240. https://doi.org/10.3390/catal9030240
Chicago/Turabian StyleLiu, Xiaofei, Yanglong Guo, Wangcheng Zhan, and Tian (Leo) Jin. 2019. "Ball Milling-Assisted Synthesis of Ultrasmall Ruthenium Phosphide for Efficient Hydrogen Evolution Reaction" Catalysts 9, no. 3: 240. https://doi.org/10.3390/catal9030240
APA StyleLiu, X., Guo, Y., Zhan, W., & Jin, T. (2019). Ball Milling-Assisted Synthesis of Ultrasmall Ruthenium Phosphide for Efficient Hydrogen Evolution Reaction. Catalysts, 9(3), 240. https://doi.org/10.3390/catal9030240