Next Article in Journal
New Insights on the Oxidation of Unsaturated Fatty Acid Methyl Esters Catalyzed by Niobium(V) Oxide. A Study of the Catalyst Surface Reactivity
Next Article in Special Issue
2′-Deoxyribosyltransferase from Bacillus psychrosaccharolyticus: A Mesophilic-Like Biocatalyst for the Synthesis of Modified Nucleosides from a Psychrotolerant Bacterium
Previous Article in Journal
Stability, Deactivation, and Regeneration of Chloroaluminate Ionic Liquid as Catalyst for Industrial C4 Alkylation
Previous Article in Special Issue
Biosynthesis of Medium- to Long-Chain α,ω-Diols from Free Fatty Acids Using CYP153A Monooxygenase, Carboxylic Acid Reductase, and E. coli Endogenous Aldehyde Reductases
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessArticle
Catalysts 2018, 8(1), 9; https://doi.org/10.3390/catal8010009

One-Pot Multi-Enzymatic Production of Purine Derivatives with Application in Pharmaceutical and Food Industry

1
Applied Biotechnology Group, European University of Madrid, c/ Tajo s/n, Villaviciosa de Odón, Madrid 28670, Spain
2
Grupo de Investigación en Desarrollo Agroindustrial Sostenible, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla 080002, Colombia
*
Author to whom correspondence should be addressed.
Received: 30 November 2017 / Revised: 27 December 2017 / Accepted: 28 December 2017 / Published: 1 January 2018
(This article belongs to the Special Issue Biocatalysis and Biotransformations)
Full-Text   |   PDF [1047 KB, uploaded 2 January 2018]   |  

Abstract

Biocatalysis reproduce nature’s synthetic strategies in order to synthesize different organic compounds. Natural metabolic pathways usually involve complex networks to support cellular growth and survival. In this regard, multi-enzymatic systems are valuable tools for the production of a wide variety of organic compounds. Methods: The production of different purine nucleosides and nucleoside-5′-monophosphates has been performed for first time, catalyzed by the sequential action of 2′-deoxyribosyltransferase from Lactobacillus delbrueckii (LdNDT) and hypoxanthine-guanine-xanthine phosphoribosyltransferase from Thermus themophilus HB8 (TtHGXPRT). Results: The biochemical characterization of LdNDT reveals that the enzyme is active and stable in a broad range of pH, temperature, and ionic strength. Substrate specificity studies showed a high promiscuity in the recognition of purine analogues. Finally, the enzymatic production of different purine derivatives was performed to evaluate the efficiency of multi-enzymatic system LdNDT/TtHGXPRT. Conclusions: The production of different therapeutic purine nucleosides was efficiently catalyzed by LdNDT/TtHGXPRT. In addition, the resulting by-products were converted to IMP and GMP. Taking all of these features, this bioprocess entails an efficient, sustainable, and economical alternative to chemical synthetic methods. View Full-Text
Keywords: 2′-deoxyribosyltransferase; phosphoribosyltransferases; cascade reactions; purine nucleoside analogues; dietary nucleotides 2′-deoxyribosyltransferase; phosphoribosyltransferases; cascade reactions; purine nucleoside analogues; dietary nucleotides
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Acosta, J.; del Arco, J.; Martinez-Pascual, S.; Clemente-Suárez, V.J.; Fernández-Lucas, J. One-Pot Multi-Enzymatic Production of Purine Derivatives with Application in Pharmaceutical and Food Industry. Catalysts 2018, 8, 9.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Catalysts EISSN 2073-4344 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top