Next Article in Journal / Special Issue
Bimetallic Catalysts Containing Gold and Palladium for Environmentally Important Reactions
Previous Article in Journal
The Performance of Electron-Mediator Modified Activated Carbon as Anode for Direct Glucose Alkaline Fuel Cell
Previous Article in Special Issue
Synthesis of Anchored Bimetallic Catalysts via Epitaxy
Open AccessArticle

Preparation of PdCu Alloy Nanocatalysts for Nitrate Hydrogenation and Carbon Monoxide Oxidation

1
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
2
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
3
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
*
Authors to whom correspondence should be addressed.
Academic Editor: John R. (JR) Regalbuto
Catalysts 2016, 6(7), 96; https://doi.org/10.3390/catal6070096
Received: 4 April 2016 / Revised: 2 June 2016 / Accepted: 24 June 2016 / Published: 30 June 2016
(This article belongs to the Special Issue Rational Synthesis of Supported Bimetallic Catalysts)
Alloying Pd with Cu is important for catalytic reactions such as denitrification reaction and CO oxidation reaction, but understanding of the catalyst preparation and its correlation with the catalyst’s activity and selectivity remains elusive. Herein, we report the results of investigations of the preparation of PdCu alloy nanocatalysts using different methods and the catalytic properties of the catalysts in catalytic denitrification reaction and CO oxidation reaction. PdCu alloy nanocatalysts were prepared by conventional dry impregnation method and ligand-capping based wet chemical synthesis method, and subsequent thermochemical activation as well. The alloying characteristics depend on the bimetallic composition. PdCu/Al2O3 with a Pd/Cu ratio of 50:50 was shown to exhibit an optimized hydrogenation activity for the catalytic denitrification reaction. The catalytic activity of the PdCu catalysts was shown to be highly dependent on the support, as evidenced by the observation of an enhanced catalytic activity for CO oxidation reaction using TiO2 and CeO2 supports with high oxygen storage capacity. Implications of the results to the refinement of the preparation of the alloy nanocatalysts are also discussed. View Full-Text
Keywords: palladium-copper alloy; nanocatalyst; nitrate hydrogenation; CO oxidation; bimetallic composition; support effect palladium-copper alloy; nanocatalyst; nitrate hydrogenation; CO oxidation; bimetallic composition; support effect
Show Figures

Figure 1

MDPI and ACS Style

Cai, F.; Yang, L.; Shan, S.; Mott, D.; Chen, B.H.; Luo, J.; Zhong, C.-J. Preparation of PdCu Alloy Nanocatalysts for Nitrate Hydrogenation and Carbon Monoxide Oxidation. Catalysts 2016, 6, 96.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map

1
Back to TopTop