Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (654)

Search Parameters:
Keywords = nanocatalyst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4017 KiB  
Article
Recyclable Platinum Nanocatalyst for Nitroarene Hydrogenation: Gum Acacia Polymer-Stabilized Pt Nanoparticles with TiO2 Support
by Supriya Prakash, Selvakumar Ponnusamy, Jagadeeswari Rangaraman, Kundana Nakkala and Putrakumar Balla
ChemEngineering 2025, 9(4), 81; https://doi.org/10.3390/chemengineering9040081 - 30 Jul 2025
Viewed by 84
Abstract
Platinum has emerged as an optimal catalyst for the selective hydrogenation of nitroarenes owing to its high hydrogenation activity, selectivity, and stability. In this study, we report the fabrication of platinum nanoparticles stabilized on a composite support consisting of gum acacia polymer (GAP) [...] Read more.
Platinum has emerged as an optimal catalyst for the selective hydrogenation of nitroarenes owing to its high hydrogenation activity, selectivity, and stability. In this study, we report the fabrication of platinum nanoparticles stabilized on a composite support consisting of gum acacia polymer (GAP) and TiO2. It was engineered for the targeted reduction of nitroarenes to arylamines via selective hydrogenation in methanol at ambient temperature. The non-toxic and biocompatible properties of GAP enable it to act as a reducing and stabilizing agent during synthesis. The synthesized nanocatalyst was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Morphological and structural analyses revealed that the fabricated catalyst consisted of minuscule Pt nanoparticles integrated within the GAP framework, accompanied by the corresponding TiO2 nanoparticles. Inductively coupled plasma optical emission spectrometry (ICP-OES) was employed to ascertain the Pt content. The mild reaction conditions, decent yields, trouble-free workup, and facile separation of the catalyst make this method a clean and practical alternative to nitroreduction. Selective hydrogenation yielded an average arylamine production of 97.6% over five consecutive cycles, demonstrating the stability of the nanocatalyst without detectable leaching. Full article
Show Figures

Figure 1

28 pages, 14491 KiB  
Article
Catalytically Active Oxidized PtOx Species on SnO2 Supports Synthesized via Anion Exchange Reaction for 4-Nitrophenol Reduction
by Izabela Ðurasović, Robert Peter, Goran Dražić, Fabio Faraguna, Rafael Anelić, Marijan Marciuš, Tanja Jurkin, Vlasta Mohaček Grošev, Maria Gracheva, Zoltán Klencsár, Mile Ivanda, Goran Štefanić and Marijan Gotić
Nanomaterials 2025, 15(15), 1159; https://doi.org/10.3390/nano15151159 - 28 Jul 2025
Viewed by 252
Abstract
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room [...] Read more.
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room temperature), SnB (hydrothermally treated at 180 °C), and SnC (annealed at 600 °C), are systematically investigated, all loaded with 1 mol% Pt from H2PtCl6 under identical mild conditions. The chloride ions from the SnCl4 precursors were efficiently removed via a strong-base anion exchange reaction, resulting in highly dispersed, crystalline ~5 nm cassiterite SnO2 particles. All Pt/SnO2 composites displayed mesoporous structures with type IVa isotherms and H2-type hysteresis, with SP1a (Pt on SnA) exhibiting the largest surface area (122.6 m2/g) and the smallest pores (~3.5 nm). STEM-HAADF imaging revealed well-dispersed PtOx domains (~0.85 nm), while XPS confirmed the dominant Pt4+ and Pt2+ species, with ~25% Pt0 likely resulting from photoreduction and/or interactions with Sn–OH surface groups. Raman spectroscopy revealed three new bands (260–360 cm−1) that were clearly visible in the sample with 10 mol% Pt and were due to the vibrational modes of the PtOx species and Pt-Cl bonds introduced due the addition and hydrolysis of H2PtCl6 precursor. TGA/DSC analysis revealed the highest mass loss for SP1a (~7.3%), confirming the strong hydration of the PtOx domains. Despite the predominance of oxidized PtOx species, SP1a exhibited the highest catalytic activity (kapp = 1.27 × 10−2 s−1) and retained 84.5% activity for the reduction of 4-NP to 4-AP after 10 cycles. This chloride-free low-temperature synthesis route offers a promising and generalizable strategy for the preparation of noble metal-based nanocatalysts on oxide supports with high catalytic activity and reusability. Full article
Show Figures

Figure 1

18 pages, 3880 KiB  
Article
Sustainable Synthesis of Adipic Acid via MnOx-Catalyzed Electrooxidation of Cyclohexanol in Neutral Electrolyte
by Jiaming Shi, Guiling Zhang, Shiying Yang, Dan Yang, Yuguang Jin, Xiaoyue Wan, Yihu Dai, Yanhui Yang and Chunmei Zhou
Molecules 2025, 30(14), 2937; https://doi.org/10.3390/molecules30142937 - 11 Jul 2025
Viewed by 310
Abstract
Adipic acid (AA), a pivotal precursor for nylon-6,6 and polyurethane, was synthesized via an innovative catalytic electrocatalytic oxidation strategy in this study. Four distinct MnOx/CNT nanocatalysts were prepared by hydrothermal and co-precipitation methods and fabricated into electrodes for the oxidation of [...] Read more.
Adipic acid (AA), a pivotal precursor for nylon-6,6 and polyurethane, was synthesized via an innovative catalytic electrocatalytic oxidation strategy in this study. Four distinct MnOx/CNT nanocatalysts were prepared by hydrothermal and co-precipitation methods and fabricated into electrodes for the oxidation of cyclohexanol (Cy-OH) in a K2SO4 neutral solution. Comprehensive characterization revealed that the catalytic performance depended on both crystalline phase configuration and manganese valence states. MnO(OH) and MnOx were identified as the main active species, with the synergy between MnO species and carbon nanotubes significantly enhancing catalytic activity. Mechanistic investigations demonstrated that under Mn4+-dominant conditions, low-valence manganese species facilitated Cy-OH-to-cyclohexanone (Cy=O) conversion, while an optimal Oads/Olat ratio (≈1) effectively promoted subsequent Cy=O oxidation to AA. Under optimized conditions (1.25 V vs. Ag/AgCl, 80 °C, 15 h), complete Cy-OH conversion was achieved with 56.4% AA yield and exceptional Faradaic efficiency exceeding 94%. This work elucidates manganese-based electrocatalytic oxidation mechanisms, proposes a sequential reaction pathway, and establishes an environmentally benign synthesis protocol for AA, advancing sustainable industrial chemistry. Full article
(This article belongs to the Special Issue Nanomaterials for Catalytic Upcycling/Conversion of Plastics/Biomass)
Show Figures

Figure 1

20 pages, 2436 KiB  
Article
Advanced Hybrid Nanocatalysts for Green Hydrogen: Carbon-Supported MoS2 and ReS2 as Noble Metal Alternatives
by Maria Jarząbek-Karnas, Zuzanna Bojarska, Patryk Klemczak, Łukasz Werner and Łukasz Makowski
Int. J. Mol. Sci. 2025, 26(14), 6640; https://doi.org/10.3390/ijms26146640 - 10 Jul 2025
Viewed by 497
Abstract
One of the key challenges in commercializing proton exchange membrane (PEM) electrolyzer technology is reducing the production costs while maintaining high efficiency and operational stability. Significant contributors to the overall cost of the device are the electrode catalysts with IrO2 and Pt/C. [...] Read more.
One of the key challenges in commercializing proton exchange membrane (PEM) electrolyzer technology is reducing the production costs while maintaining high efficiency and operational stability. Significant contributors to the overall cost of the device are the electrode catalysts with IrO2 and Pt/C. Due to the high cost and limited availability of noble metals, there is growing interest in developing alternative, low-cost catalytic materials. In recent years, two-dimensional transition metal dichalcogenides (2D TMDCs), such as molybdenum disulfide (MoS2) and rhenium disulfide (ReS2), have attracted considerable attention due to their promising electrochemical properties for hydrogen evolution reactions (HERs). These materials exhibit unique properties, such as a high surface area or catalytic activity localized at the edges of the layered structure, which can be further enhanced through defect engineering or phase modulation. To increase the catalytically active surface area, the investigated materials were deposited on a carbon-based support—Vulcan XC-72R—selected for its high electrical conductivity and large specific surface area. This study investigated the physicochemical and electrochemical properties of six catalyst samples with varying MoS2 and ReS2 to carbon support ratios. Among the composites analyzed, the best sample on MoS2 (containing the most carbon soot) and the best sample on ReS2 (containing the least carbon soot) were selected. These were then used as cathode catalysts in an experimental PEM electrolyzer setup. The results confirmed satisfactory catalytic activity of the tested materials, indicating their potential as alternatives to conventional noble metal-based catalysts and providing a foundation for further research in this area. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

19 pages, 2812 KiB  
Article
Preparation of PdCu Catalyst and the Catalytic Degradation of Methylene Blue and Rhodamine B with PMS
by Wei Wang, Jiaqi Liu, Guang Shi, Shiqi Wu, Nan Zhang and Ruixia Yuan
Catalysts 2025, 15(7), 610; https://doi.org/10.3390/catal15070610 - 20 Jun 2025
Viewed by 421
Abstract
Spherical Cu2O nanoparticles were obtained by reducing copper acetate in N,N-dimethylformamide (DMF) system using glucose as the reducing agent and polyvinylpyrrolidone (PVP) as the surfactant, with which spherical PdCu nanocatalysts were thus synthesized by disproportionation. The catalyst was used for the [...] Read more.
Spherical Cu2O nanoparticles were obtained by reducing copper acetate in N,N-dimethylformamide (DMF) system using glucose as the reducing agent and polyvinylpyrrolidone (PVP) as the surfactant, with which spherical PdCu nanocatalysts were thus synthesized by disproportionation. The catalyst was used for the activation of peroxymonosulfate (PMS) and showed an excellent degradation effect on rhodamine B and methylene blue-contained printing and dyeing wastewater with good stability. Additionally, the surface morphology analysis of the catalyst was carried out by SEM and TEM. The structure was characterized by XRD and FT-IR. The valence state and composition of the catalyst were characterized by XPS. The catalytic performance of the prepared catalysts was investigated with methylene blue and rhodamine B used as target pollutants. The results showed that the catalytic reduction efficiency of PdCu nanocatalyst for the two pollutants could reach 99% at 20 °C, when catalyst concentration was 60 mg/L and PMS concentration was 1.0 g/L and 0.6 g/L, respectively. The degradation efficiency of the catalyst was significantly reduced when Cl, HCO3 and HA were present in the water. The degradation efficiency was above 90% when the pH was in the range of 5–11. The excellent performance of the PdCu/PMS system in the treatment of RhB-contained wastewater was further confirmed by taking into account of the data of free radical quenching experiment and the results of electron paramagnetic resonance (EPR) experiment. After three cycles, the removal rate of MB and RhB could still be maintained at more than 90%, which proved its excellent recyclability due to its remarkable stability and efficiency. Full article
Show Figures

Figure 1

14 pages, 1839 KiB  
Article
Non-Carbon-Supported, Pt-Based Catalysts with Applications in the Electrochemical Hydrogen Pump/Compressor (EHP/C)
by Galin Rusev Borisov, Nevelin Rusev Borisov and Evelina Slavcheva
Appl. Sci. 2025, 15(12), 6507; https://doi.org/10.3390/app15126507 - 9 Jun 2025
Viewed by 527
Abstract
In this study, platinum (Pt) nanocatalysts were synthesized via a sol-gel method over the non-stoichiometric, Magnéli phase titanium oxides (TinO2n−1) at varying Pt loadings (10–40 wt.%). Their structural and morphological properties were characterized, and after preliminary electrochemical screening, the catalysts were [...] Read more.
In this study, platinum (Pt) nanocatalysts were synthesized via a sol-gel method over the non-stoichiometric, Magnéli phase titanium oxides (TinO2n−1) at varying Pt loadings (10–40 wt.%). Their structural and morphological properties were characterized, and after preliminary electrochemical screening, the catalysts were integrated into commercially available gas diffusion electrodes (GDEs) with a three-layer structure to enhance mass transport and catalyst utilization. Membrane electrode assemblies (MEAs) were fabricated using a Nafion® 117 polymer membrane and tested in a laboratory PEM cell under controlled conditions. The electrochemical activity toward the hydrogen reduction reaction (HRR) was evaluated at room temperature and at elevated temperatures to determine the catalytic efficiency and stability. The optimal Pt loading was determined to be 30 wt.%, achieving a current density of approximately 0.12 A cm−2 at 0.25 V, demonstrating a balance between catalyst efficiency and material utilization. The chronoamperometry tests showed minimal degradation over prolonged operation, suggesting that the catalysts were durable. These findings highlight the potential of Pt-based catalysts supported on Magnéli phase titanium oxides (TinO2n−1) for efficient HRRs in electrochemical hydrogen pumps/compressors, offering a promising approach for improving hydrogen compression efficiency and advancing sustainable energy technologies. Full article
Show Figures

Figure 1

30 pages, 1170 KiB  
Review
Biofuel–Pharmaceutical Co-Production in Integrated Biorefineries: Strategies, Challenges, and Sustainability
by Tao Liu, Miaoxin He, Rui Shi, Hui Yin and Wen Luo
Fermentation 2025, 11(6), 312; https://doi.org/10.3390/fermentation11060312 - 30 May 2025
Viewed by 955
Abstract
Global demands for sustainable energy and advanced therapeutics necessitate innovative interdisciplinary solutions. Integrated biorefining emerges as a strategic response, enabling the co-production of biofuels and pharmaceutical compounds through biomass valorization. This integrated model holds promise in enhancing resource utilization efficiency while ensuring economic [...] Read more.
Global demands for sustainable energy and advanced therapeutics necessitate innovative interdisciplinary solutions. Integrated biorefining emerges as a strategic response, enabling the co-production of biofuels and pharmaceutical compounds through biomass valorization. This integrated model holds promise in enhancing resource utilization efficiency while ensuring economic viability. Our critical review methodically evaluates seven pivotal methodologies: seven key strategies: microbial metabolites, synthetic biology platforms, biorefinery waste extraction, nanocatalysts, computer-aided design, extremophiles, and plant secondary metabolites. Through systematic integration of these approaches, we reveal pivotal synergies and potential technological innovations that can propel multi-product biorefinery systems. Persistent challenges, particularly in reconciling complex metabolic flux balancing with regulatory compliance requirements, are analyzed. Nevertheless, advancements in systems biology, next-generation bioprocess engineering, and artificial intelligence-enhanced computational modeling present viable pathways for overcoming these obstacles. This comprehensive analysis substantiates the transformative capacity of integrated biorefining in establishing a circular bioeconomy framework, while underscoring the imperative of transdisciplinary cooperation to address existing technical and policy constraints. Full article
(This article belongs to the Special Issue Biofuels and Green Technology)
Show Figures

Figure 1

15 pages, 779 KiB  
Article
Balancing Yields and Sustainability: An Eco-Friendly Approach to Losartan Synthesis Using Green Palladium Nanoparticles
by Edith M. Antunes, Yusuf A. Adegoke, Sinazo Mgwigwi, John J. Bolton, Sarel F. Malan and Denzil R. Beukes
Molecules 2025, 30(11), 2314; https://doi.org/10.3390/molecules30112314 - 25 May 2025
Viewed by 735
Abstract
This study presents a sustainable, environmentally friendly synthetic route for the production of key intermediates in losartan using palladium nanoparticles (PdNPs) derived from a brown seaweed, Sargassum incisifolium, as a recyclable nanocatalyst. A key intermediate, biaryl, was synthesized with an excellent yield [...] Read more.
This study presents a sustainable, environmentally friendly synthetic route for the production of key intermediates in losartan using palladium nanoparticles (PdNPs) derived from a brown seaweed, Sargassum incisifolium, as a recyclable nanocatalyst. A key intermediate, biaryl, was synthesized with an excellent yield (98%) via Suzuki–Miyaura coupling between 2-bromobenzonitrile and 4-methylphenylboronic acid, catalyzed using bio-derived PdNPs under mild conditions. Subsequent bromination using N-bromosuccinimide (NBS) under LED light, followed by imidazole coupling and tetrazole ring formation, allowed for the production of losartan with an overall yield of 27%. The PdNP catalyst exhibited high stability and recyclability, as well as strong catalytic activity, even at lower loadings, and nitrosamine formation was not detected. While the overall yield was lower than that of traditional industrial methods, this was due to the deliberate avoidance of the use of toxic reagents, hazardous solvents, and protection/deprotection steps commonly used in conventional routes. This trade-off marks a shift in pharmaceutical process development, where environmental and safety considerations are increasingly prioritized in line with green chemistry and regulatory frameworks. This study provides a foundation for green scaling up strategies, incorporating sustainability principles into drug synthesis. Full article
(This article belongs to the Special Issue Organic Molecules in Drug Discovery and Development)
Show Figures

Graphical abstract

18 pages, 3727 KiB  
Article
Preparation of Strontium Hydroxystannate by a Hydrothermal Method and Its Photocatalytic Performance
by Qiao Liang, Junke Li, Rui Pan, Xianxu Yang, Yufeng Zeng, Chao Shi, Hao Bao, Peng Li, Min Fu and Shichao Tian
Processes 2025, 13(6), 1654; https://doi.org/10.3390/pr13061654 - 24 May 2025
Viewed by 422
Abstract
To address the challenge of abatement of volatile organic compounds (VOCs) in environmental catalysis, this study developed a temperature-gradient hydrothermal strategy to fabricate SrSn(OH)6 nanocatalysts and systematically investigatd their photocatalytic performance and mechanisms for gaseous toluene degradation. SrSn(OH)6 (SSH) was synthesized [...] Read more.
To address the challenge of abatement of volatile organic compounds (VOCs) in environmental catalysis, this study developed a temperature-gradient hydrothermal strategy to fabricate SrSn(OH)6 nanocatalysts and systematically investigatd their photocatalytic performance and mechanisms for gaseous toluene degradation. SrSn(OH)6 (SSH) was synthesized via a simple hydrothermal method with optimal preparation conditions identified as a reaction temperature of 140 °C and duration of 12 h. The crystallinity of SrSn(OH)6 was modulated by adjusting the pH of the precursor solution, yielding materials with distinct morphologies, specific surface areas, and band gaps. The narrowed band gap of SrSn(OH)6 nanocatalysts facilitated electron excitation to generate additional photogenerated electron-hole pairs. The SSH-10.5 sample with ordered planar and hole-like structures promoted carrier migration, effectively suppressed electron-hole recombination, and enhanced the conversion of abundant surface hydroxyl groups into hydroxyl radicals. Under UV irradiation, SSH-10.5 achieved a toluene degradation efficiency of 69.56% and showed excellent stability after five reuse cycles. Electron spin resonance analysis confirmed the presence of •OH and •O2 radicals in the reaction system, with •OH identified as the dominant active species. In situ FT-IR spectroscopy revealed that •OH and •O2 radicals attacked the methyl group of toluene, converting it into intermediates including benzyl alcohol, benzaldehyde, and benzoic acid. This work provides a novel design of high-efficiency VOC-photocatalytic materials and shows significant implications for advancing industrial exhaust gas purification technologies. Full article
(This article belongs to the Special Issue Metal Oxides in Heterogeneous Oxidation Catalysis)
Show Figures

Figure 1

15 pages, 3353 KiB  
Article
N-S Co-Doped WC Nanoparticles Show High Catalytic Activity in Hydrogen Evolution Reaction
by Zhaobin Lu, Baoxin Wang, Shengtao Li, Feiyan Pan, Xuewei Zhu and Xiaofeng Wei
Coatings 2025, 15(6), 630; https://doi.org/10.3390/coatings15060630 - 24 May 2025
Viewed by 343
Abstract
In the “dual carbon” objective, the preparation of non-precious metal catalysts with low cost and high activity is essential for the study of hydrogen evolution reactions (HERs). This study employed biomass pomelo peel powder as the carbon source and ammonium metatungstate (AMT) as [...] Read more.
In the “dual carbon” objective, the preparation of non-precious metal catalysts with low cost and high activity is essential for the study of hydrogen evolution reactions (HERs). This study employed biomass pomelo peel powder as the carbon source and ammonium metatungstate (AMT) as the tungsten source and, through a facile one-step method in molten salt, fabricated a biomass carbon-based nanocatalyst featuring carbon flakes adorned with tungsten carbide (WC) nanoparticles. Dicyandiamide and cysteine were introduced as nitrogen and sulfur sources, respectively, to explore the impacts of N-S elemental doping on the structure, composition, and HER performance of the WC/C catalyst. The experimental results showed that N-S doping changed the electronic structure of WC and increased the electrochemically active surface area, resulting in a significant increase in the HER activity of WC/C@N-S catalysts. The WC/C@N-S catalyst was evaluated with hydrogen evolution performance in a 0.5 mol/L H2SO4 solution. When the cathodic current density reached 10 mA/cm2, the overpotential was 158 mV, and the Tafel slope was 68 mV/dec, underscoring its excellent HER performance. The outcomes offer novel insights into the high-value utilization of agricultural biomass resources, and pave the way for the development of cost-effective, innovative hydrogen evolution catalysts. Full article
Show Figures

Figure 1

16 pages, 5111 KiB  
Article
One-Pot Synthesis of Magnetic Core-Shell Fe3O4@C Nanospheres with Pt Nanoparticle Immobilization for Catalytic Hydrogenation of Nitroarenes
by Jun Qiao, Yang Gao, Kai Zheng, Chao Shen, Aiquan Jia and Qianfeng Zhang
Appl. Sci. 2025, 15(10), 5773; https://doi.org/10.3390/app15105773 - 21 May 2025
Viewed by 531
Abstract
Magnetic materials with intriguing structural and functional modifications demonstrate broad application potential in various fields, including drug delivery, absorption, extraction, separation, and catalysis. In particular, the catalytic hydrogenation of functionalized organic nitro compounds represents a significant research focus in contemporary catalysis studies. A [...] Read more.
Magnetic materials with intriguing structural and functional modifications demonstrate broad application potential in various fields, including drug delivery, absorption, extraction, separation, and catalysis. In particular, the catalytic hydrogenation of functionalized organic nitro compounds represents a significant research focus in contemporary catalysis studies. A facile synthesis of Fe3O4@C–Pt core-shell nanocatalysts was developed in this work through a sequential process involving (1) one-pot hydrothermal synthesis followed by N2-annealing to obtain the Fe3O4@C core and (2) subsequent solvothermal deposition of platinum nanoparticles. Comprehensive characterization was performed using FT-IR, XRD, Raman spectroscopy, TEM, XPS, BET surface area analysis, TGA, and VSM techniques. The resulting magnetic nanocatalysts exhibited uniformly dispersed Pt nanoparticles and demonstrated exceptional catalytic performance in nitroarene hydrogenation reactions. Remarkably, the system showed excellent functional group tolerance across all 20 substituted nitroarenes, consistently yielding corresponding aromatic amine products with >93% conversion efficiency. Furthermore, the magnetic responsiveness of Fe3O4@C–Pt enabled convenient catalyst recovery through simple magnetic separation, with maintained catalytic activity over 10 consecutive reuse cycles without significant performance degradation. Full article
Show Figures

Figure 1

22 pages, 6513 KiB  
Article
Sustainable MgO Nanocatalyst Additives for Boosting Performance and Mitigating Emissions of Used Cooking Oil Biodiesel–Diesel Blends in Compression Ignition Engines
by Kiran Chaudhari, Nilesh Salunke, Shakeelur Raheman Ateequr Raheman, Khursheed B. Ansari, Kapil Ashokrao Saner, Vijay Kashinath Suryawanshi and Mumtaj Shah
Catalysts 2025, 15(5), 489; https://doi.org/10.3390/catal15050489 - 17 May 2025
Cited by 1 | Viewed by 852
Abstract
With conventional fuels dwindling and emissions rising, there is a necessity to develop and assess innovative substitute fuel for compression ignition (CI) engines. This study investigates the potential of magnesium oxide (MgO) nanoparticles as a sustainable additive to enhance the performance and reduce [...] Read more.
With conventional fuels dwindling and emissions rising, there is a necessity to develop and assess innovative substitute fuel for compression ignition (CI) engines. This study investigates the potential of magnesium oxide (MgO) nanoparticles as a sustainable additive to enhance the performance and reduce emissions of used cooking oil (UCO) biodiesel–diesel blends in CI engines. MgO nanoparticles were biosynthesized using Citrus aurantium peel extract, offering an environmentally friendly production method. A single-cylinder CI engine was used to test the performance of diesel fuel (B0), a 20% biodiesel blend (B20), and B20 blends with 30 ppm (B20M30) and 60 ppm (B20M60) MgO nanoparticles. Engine performance parameters (brake thermal efficiency (BTE), brake-specific fuel consumption (BSFC), and exhaust gas temperature (EGT)) and emission characteristics (CO, NOx, unburnt hydrocarbons (HCs), and smoke opacity) were measured. The B20M60 blend showed a 2.38% reduction in BSFC and a 3.38% increase in BTE compared to B20, with significant reductions in unburnt HC, CO, and smoke opacity. However, NOx emissions increased by 6.57%. The green synthesis method enhances sustainability, offering a promising pathway for cleaner and more efficient CI engine operation using UCO biodiesel, demonstrating the effectiveness of MgO nanoparticles. Full article
(This article belongs to the Special Issue Waste-to-Resources Through Catalysis in Green and Sustainable Way)
Show Figures

Figure 1

17 pages, 2846 KiB  
Article
Magnetic Bifunctional Ru-Enzyme Catalyst Allows for Sustainable Conversion of Cellulose Derivative to D-Sorbitol
by Boris B. Tikhonov, Daniil R. Lisichkin, Alexandrina M. Sulman, Alexander I. Sidorov, Alexey V. Bykov, Yury V. Lugovoy, Alexey Y. Karpenkov, Lyudmila M. Bronstein and Valentina G. Matveeva
Nanomaterials 2025, 15(10), 740; https://doi.org/10.3390/nano15100740 - 15 May 2025
Viewed by 376
Abstract
Here, we report the development of a novel bifunctional nanobiocatalyst for a one-pot cascade transformation of carboxymethyl cellulose (CMC) to D-sorbitol. The nanobiocatalyst is based on magnetic nanoparticle aggregates (MNAs) functionalized with chitosan (CS) cross-linked by tripolyphosphate (TPP). It contains two types of [...] Read more.
Here, we report the development of a novel bifunctional nanobiocatalyst for a one-pot cascade transformation of carboxymethyl cellulose (CMC) to D-sorbitol. The nanobiocatalyst is based on magnetic nanoparticle aggregates (MNAs) functionalized with chitosan (CS) cross-linked by tripolyphosphate (TPP). It contains two types of catalytic sites: cellulase (Cel, 5 wt.%) and Ru (3 wt.%) nanoparticles (NPs) of 0.7 nm in diameter. To optimize the nanobiocatalyst structure and composition, we first synthesized the biocatalyst, MNA-CSP-Cel (CSP stands for the CS layer cross-linked by TPP), as well as the nanocatalyst, MNA-CSP-Ru, and studied them in the one-step reactions of hydrolysis and hydrogenation, respectively. The data obtained allowed us to optimize the composition and properties of the bifunctional nanobiocatalyst, MNA-CSP-Ru-Cel, and to choose the best reaction conditions for the cascade process. MNA-CSP-Ru-Cel was characterized using transmission electron microscopy (TEM), high-resolution TEM, energy-dispersive spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and porosity measurements. The knowledge obtained enabled us to perform a cascade transformation of CMC to D-sorbitol with a yield of 83.2% for 10 h at 70 °C and a hydrogen pressure of 4 MPa. The yield demonstrated in this work is much higher than that reported to date for the same cascade process. Full article
Show Figures

Graphical abstract

18 pages, 5259 KiB  
Article
Synergistic Cu-Pd Nanocatalysts on MOF-Derived N-Doped Carbon for Selective Hydrogenolysis of Lignin to Aromatic Monomers
by Wenjun Lei, Yan Fu, Shipeng Gu, Shuaishuai Qiu and Jie Chang
Catalysts 2025, 15(5), 455; https://doi.org/10.3390/catal15050455 - 7 May 2025
Viewed by 533
Abstract
Catalytic hydrogenolysis of lignin to produce high-value monophenols has emerged as a pivotal strategy in modern biorefineries. In this study, we synthesized spherical nitrogen-doped porous carbon (SNCB) materials by using Al/Co-BTC as a precursor, introducing melamine as a supplementary carbon and nitrogen source, [...] Read more.
Catalytic hydrogenolysis of lignin to produce high-value monophenols has emerged as a pivotal strategy in modern biorefineries. In this study, we synthesized spherical nitrogen-doped porous carbon (SNCB) materials by using Al/Co-BTC as a precursor, introducing melamine as a supplementary carbon and nitrogen source, and activating the material with NaOH solution. The SNCB framework was decorated with Cu-Pd bimetallic nanoparticles, exhibiting outstanding catalytic activity in the hydrogenolytic depolymerization of organosolv lignin. The Cu-Pd@SNCB catalyst exhibited remarkable activity, attributed to the hierarchical porous structure of SNCB that facilitated metal nanoparticle dispersion and reactant accessibility. The synergistic effect between Cu as the reactive site for reactant adsorption and Pd as the reactive site for H2 adsorption enhanced the catalytic activity of the catalyst. Systematically optimized conditions (2 MPa H2, 270 °C, 3 h) yielded 43.02 wt% phenolic monomers, with 4-(3-hydroxypropyl)-2,6-dimethoxyphenol dominating the product profile at 46.3% selectivity. The catalyst and its reaction products were analyzed using advanced characterization techniques, including XPS, XRD, TEM, SEM, BET, GC-MS, GPC, 2D HSQC NMR, and FT-IR, to elucidate the reaction mechanism. The mechanism proceeds through: (1) nucleophilic substitution of the β-O-4 hydroxyl group by MeOH, followed by (2) simultaneous hydrogenolytic cleavage of Cβ-O and Cα-O bonds mediated by Cu-Pd@SNCB under H2 atmosphere, which selectively produces 4-(3-hydroxypropyl)-2,6-dimethoxyphenol and 4-propyl-2,6-dimethoxyphenol. This study proposes a bimetallic synergistic mechanism, offering a general blueprint for developing selective lignin valorization catalysts. Full article
(This article belongs to the Special Issue Catalytic Conversion and Utilization of Biomass)
Show Figures

Figure 1

22 pages, 4566 KiB  
Article
Evaluation of Vanadium Oxide Nanocatalysts over Graphene for Propylene Production Through Oxidative Propane Dehydrogenations
by Robabeh Mousavi, Armin Fazlinezhad, Abdollah Fallah Shojaei, Alimorad Rashidi and Moslem Fattahi
Catalysts 2025, 15(5), 409; https://doi.org/10.3390/catal15050409 - 23 Apr 2025
Viewed by 623
Abstract
This study reports an efficient and low-cost hydrothermal method for synthesizing vanadium oxide/graphene nanocatalysts. Field-emission scanning electron microscopy (FESEM) revealed the formation of nanostructured catalysts with consistent and directional shapes, as confirmed by X-ray diffraction (XRD). Fourier transform infrared (FTIR) spectroscopy indicated the [...] Read more.
This study reports an efficient and low-cost hydrothermal method for synthesizing vanadium oxide/graphene nanocatalysts. Field-emission scanning electron microscopy (FESEM) revealed the formation of nanostructured catalysts with consistent and directional shapes, as confirmed by X-ray diffraction (XRD). Fourier transform infrared (FTIR) spectroscopy indicated the presence of V2O5 and graphene, highlighting their bonds and structures. Thermogravimetric analysis (TGA) identified three stages of weight loss in the nanocatalysts, corresponding to water molecule evaporation, decomposition of residual organics, and the formation of yellow vanadium pentoxide particles due to the oxidation of vanadium V4+. Gas chromatography analysis from 450 °C to 600 °C showed that ethylene selectivity increased with temperature, while propylene selectivity showed the opposite trend. The effectiveness of these nanocatalysts was assessed in the oxidative dehydrogenation of propane using temperature programmed reduction. The approach of graphene-based vanadium oxide nanostructures will open up a new insight into the fabrication of high-performance catalysts. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Graphical abstract

Back to TopTop