Superhydrophobic Cerium-Based Metal–Organic Frameworks/Polymer Nanofibers for Water Treatment
Abstract
1. Introduction
2. Results and Discussion
2.1. Ce-MOFs and Electrospinning
2.2. Application for Water Treatment
Materials | Compositions | Form | Dye | Removal Method | Efficiency (%) | Ref. |
---|---|---|---|---|---|---|
FCCP | 1. Cerium 2. 2-methylimidazole 3. Chitosan 4. PVA | Fibers | MG | Adsorption | 35.92% (359.2 mg/g) | [46] |
EPCNFs-10 | 1. Cerium 2. TPA 3. Chitosan 4. PVA | Fibers | CR MB | Adsorption | 74.5% for CR 1543% for MB | [47] |
ZnO/NiO | 1. ZnO 2. NiO 3. PVP | Fibers | CR | Photocatalysis | 99% | [52] |
CeTPA | 1. Cerium 2. TPA 3. PMMA | Fibers | CR MB | Catalysis | 60% | Herein |
3. Experimental Section
3.1. Materials and Methods
3.2. Synthesis and Electrospinning of CeTPA Polymers
3.3. Characterization
3.4. Dye Adsorption and Catalysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Razavi, S.A.A.; Chen, W.; Zhou, H.-C.; Morsali, A. Tuning redox activity in metal–organic frameworks: From structure to application. Coord. Chem. Rev. 2024, 517, 216004. [Google Scholar] [CrossRef]
- Sharma, S.; Chand, P.; Kaushik, S. A critical review of recent advancements in zinc based metal organic framework nanocomposites and their derivatives for supercapacitor applications with future perspectives and challenges. Sustain. Mater. Technol. 2024, 41, e01045. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; Mathew, A. Cellulose-Metal Organic Frameworks (CelloMOFs) Hybrid Materials and their Multifaceted Applications: A Review. Coord. Chem. Rev. 2022, 451, 214263. [Google Scholar] [CrossRef]
- Goda, M.N.; Abdelhamid, H.N.; Said, A.E.-A.A. Zirconium Oxide Sulfate-Carbon (ZrOSO4@C) Derived from Carbonized UiO-66 for Selective Production of Dimethyl Ether. ACS Appl. Mater. Interfaces 2020, 12, 646–653. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. Dye encapsulated hierarchical porous zeolitic imidazolate frameworks for carbon dioxide adsorption. J. Environ. Chem. Eng. 2020, 8, 104008. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. Dehydrogenation of sodium borohydride using cobalt embedded zeolitic imidazolate frameworks. J. Solid State Chem. 2021, 297, 122034. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. Salts Induced Formation of Hierarchical Porous ZIF-8 and Their Applications for CO2 Sorption and Hydrogen Generation via NaBH4 Hydrolysis. Macromol. Chem. Phys. 2020, 221, 2000031. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; El-Zohry, A.M.; Cong, J.; Thersleff, T.; Karlsson, M.; Kloo, L.; Zou, X. Towards implementing hierarchical porous zeolitic imidazolate frameworks in dye-sensitized solar cells. R. Soc. Open Sci. 2019, 6, 190723. [Google Scholar] [CrossRef]
- Molavi, H. Cerium-based metal-organic frameworks: Synthesis, properties, and applications. Coord. Chem. Rev. 2025, 527, 216405. [Google Scholar] [CrossRef]
- Grebenyuk, D.; Shaulskaya, M.; Shevchenko, A.; Zobel, M.; Tedeeva, M.; Kustov, A.; Sadykov, I.; Tsymbarenko, D. Tuning the Cerium-Based Metal–Organic Framework Formation by Template Effect and Precursor Selection. ACS Omega 2023, 8, 48394–48404. [Google Scholar] [CrossRef]
- Jacobsen, J.; Ienco, A.; D’Amato, R.; Costantino, F.; Stock, N. The chemistry of Ce-based metal–organic frameworks. Dalt. Trans. 2020, 49, 16551–16586. [Google Scholar] [CrossRef]
- Zhu, H.-J.; Yang, Y.-K.; Li, M.-H.; Zou, L.-N.; Zhao, H.-T. Photocatalytic in situ H2O2 production and activation for enhanced ciprofloxacin degradation over CeO2-Co3O4/g-C3N4: Key role of CeO2. Rare Met. 2024, 43, 2695–2707. [Google Scholar] [CrossRef]
- Wang, X.-J.; Yuan, S.-S.; Yang, L.; Dong, Y.; Chen, Y.-M.; Zhang, W.-X.; Chen, C.-X.; Zhang, Q.-T.; Ohno, T. Spatially charge-separated 2D homojunction for photocatalytic hydrogen production. Rare Met. 2023, 42, 3952–3959. [Google Scholar] [CrossRef]
- Zhu, C.-Z.; Tian, Q.-H.; Wang, B.-H.; Xu, M.-T.; Jin, Q.-J.; Zhang, Z.-Y.; Le, S.-K.; Wu, Y.; Wei, Y.-C.; Xu, H.-T. Application of modified cerium dioxide for photocatalytic air pollution purification. Rare Met. 2024, 43, 5473–5486. [Google Scholar] [CrossRef]
- Xu, B.; Jia, L.; Yang, H.; Wang, Y.; Fan, S.-Y.; Yuan, S.-S.; Zhang, Q.-T.; Zhang, M.; Ohno, T. Improved photocatalytic performance of acetaldehyde degradation via crystal plane regulation on truncated octahedral CeO2. Rare Met. 2024, 43, 2026–2038. [Google Scholar] [CrossRef]
- Zhang, L.-Z.; Chen, L.; Yan, G.-Y.; Liang, R.-W.; Ou, H.-H. Post-modification engineering of cerium metal-organic frameworks for efficient visible light-driven water oxidation. Rare Met. 2024, 43, 5802–5812. [Google Scholar] [CrossRef]
- Chang, Y.-L.; Tsai, M.-D.; Shen, C.-H.; Huang, C.-W.; Wang, Y.-C.; Kung, C.-W. Cerium-based metal–organic framework-conducting polymer nanocomposites for supercapacitors. Mater. Today Sustain. 2023, 23, 100449. [Google Scholar] [CrossRef]
- Dileep, N.P.; Patel, J.; Pushkar, Y. Evaluation of Ce-MOFs as Photoanode Materials for the Water Oxidation Reaction: The Effect of Doping with [Ru(bpy)(dcbpy)(H2O)2]2+ Catalyst. Inorg. Chem. 2024, 63, 8050–8058. [Google Scholar] [CrossRef]
- Hassan, M.H.; Andreescu, D.; Andreescu, S. Cerium Oxide Nanoparticles Stabilized within Metal–Organic Frameworks for the Degradation of Nerve Agents. ACS Appl. Nano Mater. 2020, 3, 3288–3294. [Google Scholar] [CrossRef]
- Shen, C.-H.; Chuang, C.-H.; Gu, Y.-J.; Ho, W.H.; Song, Y.-D.; Chen, Y.-C.; Wang, Y.-C.; Kung, C.-W. Cerium-Based Metal–Organic Framework Nanocrystals Interconnected by Carbon Nanotubes for Boosting Electrochemical Capacitor Performance. ACS Appl. Mater. Interfaces 2021, 13, 16418–16426. [Google Scholar] [CrossRef]
- Dou, Y.; Zhang, W.; Kaiser, A. Electrospinning of Metal–Organic Frameworks for Energy and Environmental Applications. Adv. Sci. 2020, 7, 1902590. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Molavi, H.; Bahi, A.; Fernández, R.; Alaee, P.; Wu, S.; Wuttke, S.; Ko, F.; Arjmand, M. Metal-Organic Frameworks and Electrospinning: A Happy Marriage for Wastewater Treatment. Adv. Funct. Mater. 2022, 32, 2207723. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, H.; Liu, Y.; Gao, Y.; Kim, H.Y.; Ouyang, Y.; Yu, D.-G. Progresses on electrospun metal–organic frameworks nanofibers and their wastewater treatment applications. Mater. Today Chem. 2022, 25, 100974. [Google Scholar] [CrossRef]
- Ariyamparambil, V.J.; Kandasubramanian, B. A mini-review on the recent advancement of electrospun MOF-derived nanofibers for energy storage. Chem. Eng. J. Adv. 2022, 11, 100355. [Google Scholar] [CrossRef]
- Li, X.; Zhou, R.; Wang, Z.; Zhang, M.; He, T. Electrospun metal–organic framework based nanofibers for energy storage and environmental applications: Current approaches and challenges. J. Mater. Chem. A 2022, 10, 1642–1681. [Google Scholar] [CrossRef]
- Matabola, K.P.; Mokhena, T.C.; Bambo, M.F.; Mokhothu, T.H.; Modise, J.S.; Mochane, M.J. PVDF-Based Electrospun Nanofibers for Oil/Water Separation: A Review. Macromol. Mater. Eng. 2024, 309, 2300390. [Google Scholar] [CrossRef]
- Lin, P.; Lu, X.; Deka, B.J.; Shang, J.; Wu, H.; Sun, J.; Yi, C.; Farid, M.U.; An, A.K.; Guo, J. Research progress in the preparation of electrospinning MOF nanofiber membranes and applications in the field of photocatalysis. Sep. Purif. Technol. 2025, 356, 129948. [Google Scholar] [CrossRef]
- Quirós, J.; Boltes, K.; Aguado, S.; de Villoria, R.G.; Vilatela, J.J.; Rosal, R. Antimicrobial metal–organic frameworks incorporated into electrospun fibers. Chem. Eng. J. 2015, 262, 189–197. [Google Scholar] [CrossRef]
- Lin, M.; Shen, J.; Qian, Q.; Li, T.; Zhang, C.; Qi, H. Fabrication of Poly(Lactic Acid)@TiO2 Electrospun Membrane Decorated with Metal–Organic Frameworks for Efficient Air Filtration and Bacteriostasis. Polymers 2024, 16, 889. [Google Scholar] [CrossRef]
- Kim, M.; Yang, E.; Liang, Y.; Kim, S.; Byun, J.; Kim, H.; Choi, H. Rational Design of a Necklace-like ZIF-67/Poly(vinylidene fluoride) Electrospun Nanofiber Hybrid Membrane for Simultaneous Removal of PM0.3 and SO2. ACS Appl. Mater. Interfaces 2024, 16, 15348–15361. [Google Scholar] [CrossRef]
- Shahsavani, A.; Mousavi, S.S.; Fakhari, A.R. Electrospun polybenzidine/Zn-MOF-NH2 composite nanofibers as efficient nanosorbent for thin film microextraction of polycyclic aromatic hydrocarbons from water, tea bag and cereal samples. Microchem. J. 2024, 207, 111871. [Google Scholar] [CrossRef]
- Das, N.K.; Ravipati, M.; Ray, S.; Badhulika, S. Electrospun Fe/Co Metal–Organic Framework-PVDF Composite Nanofiber-Based Triboelectric Nanogenerator as a Self-Powered Sterilizing Mask. ACS Appl. Energy Mater. 2025, 8, 2308–2317. [Google Scholar] [CrossRef]
- Luo, R.; Li, R.; Zheng, Z.; Zhang, L.; Xie, L.; Wu, C.; Wang, S.; Chai, X.; Ma, N.L.; Naushad, M.; et al. Efficient Cr(VI) remediation by electrospun composite porous nanofibers incorporating biomass with metal oxides and metal-organic framework. Environ. Pollut. 2024, 351, 124026. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Shi, H.; Gui, D.; Zhou, W.; Liu, Y.; Yu, D.-G. Enhanced absorption capacity and fundamental mechanism of electrospun MIL-101(Cr)-NH2/PAN nanofibrous membranes for Mo(VI) removal. Surf. Interfaces 2024, 54, 105192. [Google Scholar] [CrossRef]
- Pal, S.; Kulandaivel, S.; Yeh, Y.-C.; Lin, C.-H. Recent trends in superhydrophobic metal–organic frameworks and their diverse applications. Coord. Chem. Rev. 2024, 518, 216108. [Google Scholar] [CrossRef]
- Dalapati, R.; Nandi, S.; Gogoi, C.; Shome, A.; Biswas, S. Metal–Organic Framework (MOF) Derived Recyclable, Superhydrophobic Composite of Cotton Fabrics for the Facile Removal of Oil Spills. ACS Appl. Mater. Interfaces 2021, 13, 8563–8573. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, M.; Feng, R.; Dong, L.; Sun, W.; Jia, Y. Superhydrophobic fluorinated metal–organic framework (MOF) devices for high-efficiency oil–water separation. Inorg. Chem. Front. 2024, 11, 5636–5647. [Google Scholar] [CrossRef]
- Evangelou, D.A.; Pournara, A.D.; Karagianni, V.I.; Dimitriou, C.; Andreou, E.K.; Deligiannakis, Y.; Armatas, G.S.; Manos, M.J. Just Soaping Them: The Simplest Method for Converting Metal Organic Frameworks into Superhydrophobic Materials. ACS Appl. Mater. Interfaces 2024, 16, 12672–12685. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, P.; Zhang, J.; Yang, X.; Wu, X.; Duan, W.; Yue, Y.; Xie, J.; Liu, Y.; Tian, H. Superhydrophobic metal-organic framework layers as multifunctional ion-conducting interfaces for ultra-stable Zn anodes. J. Power Sources 2024, 622, 235364. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, X.; Chen, Y.; Helal, M.H.; Alshahrani, W.A.; Alqarni, N.D.; Zhao, T.; Zhu, J.; Luo, H. Superhydrophobic anticorrosive fluoroethylene vinyl ether coating nanocomposited with metal-organic framework derived ferrite nanocapsules and MXene. Adv. Compos. Hybrid Mater. 2024, 7, 60. [Google Scholar] [CrossRef]
- Hazra, A.; Bonakala, S.; Adalikwu, S.A.; Balasubramanian, S.; Maji, T.K. Fluorocarbon-Functionalized Superhydrophobic Metal–Organic Framework: Enhanced CO2 Uptake via Photoinduced Postsynthetic Modification. Inorg. Chem. 2021, 60, 3823–3833. [Google Scholar] [CrossRef]
- Qu, C.; Li, Y.; Li, G.; Wang, X.; Su, M.; Liu, H. Liquid Interfacial Gating of Superhydrophobic Plasmonic Metal–Organic Frameworks for Three-in-One Separation, Enrichment, and Recognition in Bacterial Quorum Sensing. ACS Appl. Mater. Interfaces 2024, 16, 32824–32835. [Google Scholar] [CrossRef]
- Hu, H.; Li, Y.; Hong, X.; Li, Q.; Rao, R.; Gong, Z.; Zheng, Y. A superhydrophobic zirconium-based metal-organic framework/cellulose fiber composite material. Polym. Eng. Sci. 2024, 64, 1981–1992. [Google Scholar] [CrossRef]
- Lammert, M.; Wharmby, M.T.; Smolders, S.; Bueken, B.; Lieb, A.; Lomachenko, K.A.; Vos, D.D.; Stock, N. Cerium-based metal organic frameworks with UiO-66 architecture: Synthesis, properties and redox catalytic activity. Chem. Commun. 2015, 51, 12578–12581. [Google Scholar] [CrossRef]
- Silina, A.; El Achari, A.; Salaün, F. Metal-organic framework electrospun nanofibers in application to dye removal from textile wastewaters: A review. J. Environ. Chem. Eng. 2024, 12, 114819. [Google Scholar] [CrossRef]
- Alatawi, R.A.S. Electrospun nanofiber chitosan/polyvinyl alcohol loaded with metal organic framework nanofiber for efficient adsorption and removal of industrial dyes from waste water: Adsorption isotherm, kinetic, thermodynamic, and optimization via Box-Behnken design. Int. J. Biol. Macromol. 2025, 299, 140086. [Google Scholar] [CrossRef] [PubMed]
- Tati, A.; Ahmadipouya, S.; Molavi, H.; Mousavi, S.A.; Rezakazemi, M. Efficient removal of organic dyes using electrospun nanofibers with Ce-based UiO-66 MOFs. Ecotoxicol. Environ. Saf. 2023, 266, 115584. [Google Scholar] [CrossRef]
- Molavi, H.; Salimi, M.S. Green Synthesis of Cerium-Based Metal–Organic Framework (Ce-UiO-66 MOF) for Wastewater Treatment. Langmuir 2023, 39, 17798–17807. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. Metals Linked to Alzheimer’s Disease. In Frontiers in Clinical Drug Research—Alzheimer Disorders; Bentham Science Publishers: Sharjah, United Arab Emirates, 2020; pp. 213–235. ISBN 978-981-14-1093-2. [Google Scholar]
- Shamroukh, W.; Abdelhamid, H.N. Fenton-like Cerium Metal–Organic Frameworks (Ce-MOFs) for Catalytic Oxidation of Olefins, Alcohol, and Dyes Degradation. J. Clust. Sci. 2022, 34, 2509–2519. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; Sharmoukh, W. Intrinsic catalase-mimicking MOFzyme for sensitive detection of hydrogen peroxide and ferric ions. Microchem. J. 2021, 163, 105873. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Yuan, K.-Z.; Xu, X.-F.; Li, Z.-J.; Zhang, Z.; Wang, P.; Long, Y.-Z.; Zhang, H.-D. ZnO/NiO coaxial heterojunction nanofibers with oxygen vacancies for efficient photocatalytic Congo red degradation and hydrogen peroxide production. Ceram. Int. 2024, 50, 39636–39644. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelhamid, H.N.; Salim, S.A. Superhydrophobic Cerium-Based Metal–Organic Frameworks/Polymer Nanofibers for Water Treatment. Catalysts 2025, 15, 878. https://doi.org/10.3390/catal15090878
Abdelhamid HN, Salim SA. Superhydrophobic Cerium-Based Metal–Organic Frameworks/Polymer Nanofibers for Water Treatment. Catalysts. 2025; 15(9):878. https://doi.org/10.3390/catal15090878
Chicago/Turabian StyleAbdelhamid, Hani Nasser, and Samar A. Salim. 2025. "Superhydrophobic Cerium-Based Metal–Organic Frameworks/Polymer Nanofibers for Water Treatment" Catalysts 15, no. 9: 878. https://doi.org/10.3390/catal15090878
APA StyleAbdelhamid, H. N., & Salim, S. A. (2025). Superhydrophobic Cerium-Based Metal–Organic Frameworks/Polymer Nanofibers for Water Treatment. Catalysts, 15(9), 878. https://doi.org/10.3390/catal15090878