Evaluation of Aqueous Enzymatic Extraction for Obtaining Oil from Thevetia peruviana Seeds
Abstract
1. Introduction
2. Results and Discussion
2.1. Solvent Extraction of Oil from T. peruviana Seed
2.2. AEE of Oil from T. peruviana Seeds
Optimization of Aqueous Enzymatic Extraction
2.3. Analysis of the Oil Obtained from T. peruviana Seed
2.3.1. Determination of Physicochemical Properties of T. peruviana Seed Oil Obtained Using AEE or SE
2.3.2. Fatty Acid Composition
2.3.3. SEM Observation of T. peruviana Seeds
3. Materials and Methods
3.1. Materials
3.2. Solvent Extraction of Oil from T. peruviana Seeds
3.3. AEE of Oil from T. peruviana Seeds
3.4. The Optimization of the AEE of Oil from T. peruviana Seeds
3.5. The Determination of Some of the Physicochemical Characteristics of the Extracted Oils
3.6. Scanning Electron Micrographs (SEM) of T. peruviana Seeds
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sanjay Basumatary, S.B. Yellow Oleander (Thevetia peruviana) Seed Oil Biodiesel as an Alternative and Renewable Fuel for Diesel Engines: A Review. Int. J. Chemtech Res. 2015, 7, 2823–2840. [Google Scholar]
- Choudhury, N.D.; Saha, N. A Preliminary Investigation of Physicochemical, Rheological and Tribological Properties of Bio-Lubricant from Thevetia peruviana Oil. Tribol. Ind. 2022, 44, 641. [Google Scholar] [CrossRef]
- Kannan, T.K.; Mohan, S.K. Thevetia peruviana—A Potential Non-Edible Plant Source for Biodiesel Production. Int. J. Ind. Eng. 2017, 1, 1–5. [Google Scholar]
- Harari, P.A.; Banapurmath, N.R.; Yaliwal, V.S.; Khan, T.M.Y.; Soudagar, M.E.M.; Sajjan, A.M. Experimental Studies on Performance and Emission Characteristics of Reactivity Controlled Compression Ignition (RCCI) Engine Operated with Gasoline and Thevetia peruviana Biodiesel. Renew. Energy 2020, 160, 865–875. [Google Scholar] [CrossRef]
- Deka, D.C.; Basumatary, S. High Quality Biodiesel from Yellow Oleander (Thevetia peruviana) Seed Oil. Biomass Bioenergy 2011, 35, 1797–1803. [Google Scholar] [CrossRef]
- Olosho, A.I.; Nair, S.K.; Ambade, A.V.; Adekola, F.A. Eco-Friendly Extraction of Thevetia peruviana Oil: A Synergistic Approach of d-Limonene and Ultrasound Activation. ACS Agric. Sci. Technol. 2023, 3, 1014–1024. [Google Scholar] [CrossRef]
- Kelechi, I.K.; Dodo, S.I.; Bello, A.M.; Hassan, U. Production and Characterization of New Surfactant Formulated from Thevetia peruviana Seed Oil for Use in Enhanced Oil Recovery. Pet. Sci. Eng. 2024, 8, 1–6. [Google Scholar] [CrossRef]
- Oluwaniyi, O.O.; Ibiyemi, S.A. Extractability of Thevetia peruviana Glycosides with Alcohol Mixture. Afr. J. Biotechnol. 2007, 6, 2166–2170. [Google Scholar]
- Yarkasuwa, C.I.; Wilson, D.; Michael, E. Production of Biodiesel from Yellow Oleander (Thevetia peruviana) Oil and Its Biodegradability. J. Korean Chem. Soc. 2013, 57, 377–381. [Google Scholar] [CrossRef]
- Adebowale, K.O.; Adewuyi, A.; Ajulo, K.D. Examination of Fuel Properties of the Methyl Esters of Thevetia peruviana Seed Oil. Int. J. Green. Energy 2012, 9, 297–307. [Google Scholar] [CrossRef]
- Aboyeji, C.M.; Babalola, F.D. Effect of Inorganic Fertilizer Application on Growth and Yield of Thevetia peruviana (Pers) Schum.(Yellow Oleander) in the Southern Guinea Savannah of Nigeria. Agrosearch 2013, 13, 32–41. [Google Scholar] [CrossRef]
- Olosho, A.I.; Alam, M.S.; Sukumaran Nair, K.; Ambade, A.V.; Adekola, F.A. Nonedible Thevetia peruviana Oil for the Synthesis of Biobased Thermosets and Vitrimers with Tunable Mechanical Properties. ACS Appl. Polym. Mater. 2024, 6, 2695–2708. [Google Scholar] [CrossRef]
- Yadav, A.K.; Khan, M.E.; Pal, A. Biodiesel Production from Oleander (Thevetia peruviana) Oil and Its Performance Testing on a Diesel Engine. Korean J. Chem. Eng. 2017, 34, 340–345. [Google Scholar] [CrossRef]
- Arun, S.B.; Suresh, R.; Yatish, K.V. Study of Performance, Combustion and Emission Characteristics of Heterogeneous Catalyzed Yellow Oleander Biodiesel on Compression Ignition (CI) Engine. Biofuels 2020, 11, 793–800. [Google Scholar] [CrossRef]
- Sut, D.; Chutia, R.S.; Bordoloi, N.; Narzari, R.; Kataki, R. Complete Utilization of Non-Edible Oil Seeds of Cascabela thevetia through a Cascade of Approaches for Biofuel and by-Products. Bioresour. Technol. 2016, 213, 111–120. [Google Scholar] [CrossRef]
- Balusamy, T.; Marappan, R. Performance Evaluation of Direct Injection Diesel Engine with Blends of Thevetia peruviana Seed Oil and Diesel. J. Sci. Ind. Res. 2007, 66, 1035–1040. [Google Scholar]
- Usman, L.A.; Oluwaniyi, O.O.; Ibiyemi, S.A.; Muhammad, N.O.; Ameen, O.M. The Potential of Oleander (Thevetia peruviana) in African Agricultural and Industrial Development: A Case Study of Nigeria. J. Appl. Biosci. 2009, 24, 1477–1487. [Google Scholar]
- Gao, Y.; Ding, Z.; Liu, Y.; Xu, Y.-J. Aqueous Enzymatic Extraction: A Green, Environmentally Friendly and Sustainable Oil Extraction Technology. Trends Food Sci. Technol. 2024, 144, 104315. [Google Scholar] [CrossRef]
- Yang, J.; Wen, C.; Duan, Y.; Deng, Q.; Peng, D.; Zhang, H.; Ma, H. The Composition, Extraction, Analysis, Bioactivities, Bioavailability and Applications in Food System of Flaxseed (Linum usitatissimum L.) Oil: A Review. Trends Food Sci. Technol. 2021, 118, 252–260. [Google Scholar] [CrossRef]
- Hu, B.; Xi, X.; Li, H.; Qin, Y.; Li, C.; Zhang, Z.; Liu, Y.; Zhang, Q.; Liu, A.; Liu, S.; et al. A Comparison of Extraction Yield, Quality and Thermal Properties from Sapindus mukorossi Seed Oil between Microwave Assisted Extraction and Soxhlet Extraction. Ind. Crops Prod. 2021, 161, 113185. [Google Scholar] [CrossRef]
- Dunford, N.T. Enzyme-Aided Oil and Oilseed Processing: Opportunities and Challenges. Curr. Opin. Food Sci. 2022, 48, 100943. [Google Scholar] [CrossRef]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.-S. Review of Alternative Solvents for Green Extraction of Food and Natural Products: Panorama, Principles, Applications and Prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Hao, J.; Wang, Z.; Liang, D.; Wang, J.; Ma, Y.; Zhang, M. Physicochemical Properties, Fatty Acid Compositions, Bioactive Compounds, Antioxidant Activity and Thermal Behavior of Rice Bran Oil Obtained with Aqueous Enzymatic Extraction. LWT 2021, 149, 111817. [Google Scholar] [CrossRef]
- Benkirane, C.; Ben Moumen, A.; Allay, A.; Rbah, Y.; Barkaoui, M.; Serghini Caid, H.; Elamrani, A.; Mansouri, F. Investigating the Potential of Aqueous Enzymatic Extraction of Safflower (Carthamus tinctorius L.) Seed Oil: Process Optimization and Oil Characterization. Biocatal. Agric. Biotechnol. 2024, 61, 103354. [Google Scholar] [CrossRef]
- Díaz-Suárez, P.; Rosales-Quintero, A.; Fernandez-Lafuente, R.; Pola-Sánchez, E.; Hernández-Cruz, M.C.; Ovando-Chacón, S.L.; Rodrigues, R.C.; Tacias-Pascacio, V.G. Aqueous Enzymatic Extraction of Ricinus communis Seeds Oil Using Viscozyme L. Ind. Crops Prod. 2021, 170, 113811. [Google Scholar] [CrossRef]
- Wang, D.; Yuan, Y.; Xie, T.; Tang, G.; Song, G.; Li, L.; Yuan, T.; Zheng, F.; Gong, J. Ultrasound-Assisted Aqueous Enzymatic Extraction of Gardenia Fruits (Gardenia jasminoides Ellis) Oil: Optimization and Quality Evaluation. Ind. Crops Prod. 2023, 191, 116021. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Vuong, D.P.; Nguyen, N.T.T.; Nguyen, N.P.; Su, C.-H.; Wang, F.-M.; Juan, H.-Y. Aqueous Enzymatic Extraction of Polyunsaturated Fatty Acid–Rich Sacha Inchi (Plukenetia volubilis L.) Seed Oil: An Eco-Friendly Approach. LWT 2020, 133, 109992. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.G.; Rosales-Quintero, A.; Rodrigues, R.C.; Castañeda-Valbuena, D.; Díaz-Suarez, P.F.; Torrestiana-Sánchez, B.; Jiménez-Gómez, E.F.; Fernandez-Lafuente, R. Aqueous Extraction of Seed Oil from Mamey Sapote (Pouteria sapota) after Viscozyme l Treatment. Catalysts 2021, 11, 748. [Google Scholar] [CrossRef]
- Peng, L.; Ye, Q.; Liu, X.; Liu, S.; Meng, X. Optimization of Aqueous Enzymatic Method for Camellia sinensis Oil Extraction and Reuse of Enzymes in the Process. J. Biosci. Bioeng. 2019, 128, 716–722. [Google Scholar] [CrossRef]
- Sorita, G.D.; Favaro, S.P.; de Sousa Rodrigues, D.; da Silva Junior, W.P.; de Oliveira Leal, W.G.; Ambrosi, A.; Di Luccio, M. Aqueous Enzymatic Extraction of Macauba (Acrocomia aculeata) Pulp Oil: A Green and Sustainable Approach for High-Quality Oil Production. Food Res. Int. 2024, 182, 114160. [Google Scholar] [CrossRef]
- Hu, B.; Li, Y.; Song, J.; Li, H.; Zhou, Q.; Li, C.; Zhang, Z.; Liu, Y.; Liu, A.; Zhang, Q.; et al. Oil Extraction from Tiger Nut (Cyperus esculentus L.) Using the Combination of Microwave-Ultrasonic Assisted Aqueous Enzymatic Method—Design, Optimization and Quality Evaluation. J. Chromatogr. A 2020, 1627, 461380. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.H.; Ding, R.; Yuan, Q.; Wei, Y.; Liang, H. Facile Synthesis of Alcalase-Inorganic Hybrid Nanoflowers Used for Soy Protein Isolate Hydrolysis to Improve Its Functional Properties. Food Chem. 2019, 289, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Tacias-Pascacio, V.G.; Morellon-Sterling, R.; Siar, E.H.; Tavano, O.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R. Use of Alcalase in the Production of Bioactive Peptides: A Review. Int. J. Biol. Macromol. 2020, 165, 2143–2196. [Google Scholar] [CrossRef]
- de Aquino, D.S.; Roders, C.; Vessoni, A.M.; Stevanato, N.; da Silva, C. Assessment of Obtaining Sunflower Oil from Enzymatic Aqueous Extraction Using Protease Enzymes. Grasas y Aceites 2022, 73, e452. [Google Scholar] [CrossRef]
- Valsalan, A.; Sivaranjana, P.; Rajini, N.; Arumugaprabu, V. Chapter 3—Enzymes for the Recovery of Oil from Edible Seeds. In Enzymes in Oil Processing; Bhawani, S.A., Khan, A., Awang Husaini, A.A.S., Asaruddin, M.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 33–53, ISBN 978-0-323-91154-2. [Google Scholar]
- Jain, A.; Vora, K. Quality Biodiesel Production and Engine Performance & Emission Evaluation Using Blends of Castor Biodiesel; Technical Paper; SAE: London, UK, 2021. [Google Scholar]
- Devarajan, Y.; Munuswamy, D.B.; Subbiah, G.; Vellaiyan, S.; Nagappan, B.; Varuvel, E.G.; Thangaraja, J. Inedible Oil Feedstocks for Biodiesel Production: A Review of Production Technologies and Physicochemical Properties. Sustain. Chem. Pharm. 2022, 30, 100840. [Google Scholar] [CrossRef]
- Rangabashiam, D.; Munuswamy, D.B.; Duraiswamy Balasubramanian, S.; Christopher, D. Performance, Emission, and Combustion Analysis on Diesel Engine Fueled with Blends of Neem Biodiesel/Diesel/ Additives. Energy Sources Part A Recovery Util. Environ. Eff. 2024, 46, 8059–8069. [Google Scholar] [CrossRef]
- Kavitha, K.R.; Beemkumar, N.; Rajasekar, R. Experimental Investigation of Diesel Engine Performance Fuelled with the Blends of Jatropha Curcas, Ethanol, and Diesel. Environ. Sci. Pollut. Res. 2019, 26, 8633–8639. [Google Scholar] [CrossRef]
- Latif, S.; Anwar, F. Effect of Aqueous Enzymatic Processes on Sunflower Oil Quality. J. Am. Oil Chem. Soc. 2009, 86, 393–400. [Google Scholar] [CrossRef]
- de Moura, J.M.L.N.; Campbell, K.; Mahfuz, A.; Jung, S.; Glatz, C.E.; Johnson, L. Enzyme-Assisted Aqueous Extraction of Oil and Protein from Soybeans and Cream De-Emulsification. J. Am. Oil Chem. Soc. 2008, 85, 985–995. [Google Scholar] [CrossRef]
- Liu, Z.; Gui, M.; Xu, T.; Zhang, L.; Kong, L.; Qin, L.; Zou, Z. Efficient Aqueous Enzymatic-Ultrasonication Extraction of Oil from Sapindus mukorossi Seed Kernels. Ind. Crops Prod. 2019, 134, 124–133. [Google Scholar] [CrossRef]
- Polmann, G.; Badia, V.; Frena, M.; Teixeira, G.L.; Rigo, E.; Block, J.M.; Camino Feltes, M.M. Enzyme-Assisted Aqueous Extraction Combined with Experimental Designs Allow the Obtaining of a High-Quality and Yield Pecan Nut Oil. LWT 2019, 113, 108283. [Google Scholar] [CrossRef]
- Latif, S.; Anwar, F. Aqueous Enzymatic Sesame Oil and Protein Extraction. Food Chem. 2011, 125, 679–684. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, L.; Yao, F.; Chen, F. Effects of PH on the Composition and Physical Stability of Peanut Oil Bodies from Aqueous Enzymatic Extraction. J. Chem. 2021, 2021, 2441385. [Google Scholar] [CrossRef]
- Zhang, S.; Pan, Y.-G.; Zheng, L.; Yang, Y.; Zheng, X.; Ai, B.; Xu, Z.; Sheng, Z. Application of Steam Explosion in Oil Extraction of Camellia Seed (Camellia oleifera Abel.) and Evaluation of Its Physicochemical Properties, Fatty Acid, and Antioxidant Activities. Food Sci. Nutr. 2019, 7, 1004–1016. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Z.; Fu, M. Comparison of Quality and Oxidative Stability of Pumpkin Seed (Cucurbita maxima) Oil between Conventional and Enzymatic Extraction Methods. Sustainable Food Technol. 2024, 2, 1033–1040. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Z.; Guo, Z.; Charalampopoulos, D. Comparative Extraction of Melon Seed (Cucumis melo L.) Oil by Conventional and Enzymatic Methods: Physicochemical Properties and Oxidative Stability. J. Agric. Food Res. 2024, 16, 101182. [Google Scholar] [CrossRef]
- Wu, H.; Shi, J.; Xue, S.; Kakuda, Y.; Wang, D.; Jiang, Y.; Ye, X.; Li, Y.; Subramanian, J. Essential Oil Extracted from Peach (Prunus persica) Kernel and Its Physicochemical and Antioxidant Properties. LWT Food Sci. Technol. 2011, 44, 2032–2039. [Google Scholar] [CrossRef]
- Dursun Capar, T.; Dedebas, T.; Yalcin, H.; Ekici, L. Extraction Method Affects Seed Oil Yield, Composition, and Antioxidant Properties of European Cranberrybush (Viburnum opulus). Ind. Crops Prod. 2021, 168, 113632. [Google Scholar] [CrossRef]
- OJEH, O.A. Effect of Refining on the Physical and Chemical Properties of Cashew kernel Oil. Int. J. Food Sci. Technol. 1981, 16, 513–517. [Google Scholar] [CrossRef]
- Yang, T.; He, R.; Xia, Q.; Cacciotti, I.; Korma, S.A.; Zhang, W.; Yi, G. Phytosterol-Enriched Camellia oleifera Abel Seed Oil Obtained by Subcritical Butane Extraction: Physicochemical Properties and Oxidative Stability. Food Chem. 2025, 472, 142791. [Google Scholar] [CrossRef]
- Mat Yusoff, M.; Gordon, M.H.; Niranjan, K. Aqueous Enzyme Assisted Oil Extraction from Oilseeds and Emulsion De-Emulsifying Methods: A Review. Trends Food Sci. Technol. 2015, 41, 60–82. [Google Scholar] [CrossRef]
- Gai, Q.-Y.; Jiao, J.; Mu, P.-S.; Wang, W.; Luo, M.; Li, C.-Y.; Zu, Y.-G.; Wei, F.-Y.; Fu, Y.-J. Microwave-Assisted Aqueous Enzymatic Extraction of Oil from Isatis indigotica Seeds and Its Evaluation of Physicochemical Properties, Fatty Acid Compositions and Antioxidant Activities. Ind. Crops Prod. 2013, 45, 303–311. [Google Scholar] [CrossRef]
- Lutterodt, H.; Slavin, M.; Whent, M.; Turner, E.; Yu, L. Fatty Acid Composition, Oxidative Stability, Antioxidant and Antiproliferative Properties of Selected Cold-Pressed Grape Seed Oils and Flours. Food Chem. 2011, 128, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Aziz, T.; Qadir, R.; Anwar, F.; Naz, S.; Nazir, N.; Nabi, G.; Haiying, C.; Lin, L.; Alharbi, M.; Alasmari, A.F. Optimal Enzyme-Assisted Extraction of Phenolics from Leaves of Pongamia pinnata via Response Surface Methodology and Artificial Neural Networking. Appl. Biochem. Biotechnol. 2024, 196, 6508–6525. [Google Scholar] [CrossRef]
- Coniglio, R.O.; Díaz, G.V.; Barua, R.C.; Albertó, E.; Zapata, P.D. Enzyme-Assisted Extraction of Phenolic Compounds and Proteins from Sugarcane Bagasse Using a Low-Cost Cocktail from Auricularia fuscosuccinea. Int. J. Food Sci. Technol. 2022, 57, 1114–1121. [Google Scholar] [CrossRef]
- Liu, Q.; Li, P.; Chen, J.; Li, C.; Jiang, L.; Luo, M.; Sun, A.N. Optimization of Aqueous Enzymatic Extraction of Castor (Ricinus communis) Seeds Oil Using Response Surface Methodology. Biobased Mater. Bioenergy 2019, 13, 114–122. [Google Scholar] [CrossRef]
- Xu, Y.X.; Hanna, M.A.; Josiah, S.J. Hybrid Hazelnut Oil Characteristics and Its Potential Oleochemical Application. Ind. Crops Prod. 2007, 26, 69–76. [Google Scholar] [CrossRef]
- Liu, N.; Ren, G.; Faiza, M.; Li, D.; Cui, J.; Zhang, K.; Yao, X.; Zhao, M. Comparison of Conventional and Green Extraction Methods on Oil Yield, Physicochemical Properties, and Lipid Compositions of Pomegranate Seed Oil. J. Food Compos. Anal. 2022, 114, 104747. [Google Scholar] [CrossRef]
- Akintelu, M.T.; Amoo, I.A. Proximate Characterisation and Physicochemical Properties of Raw and Boiled Milk Bush (Thevetia peruviana) Seed. Int. J. Sci. 2016, 5, 16–21. [Google Scholar] [CrossRef]
- Liu, Z.; Liao, H.; Wei, C.; Qi, Y.; Zou, Z. Application of an Aqueous Enzymatic–Ultrasound Cavitation Method for the Separation of Sapium sebiferum Seed Kernel Oil. Ultrason. Sonochem. 2023, 101, 106704. [Google Scholar] [CrossRef]
- Vilas-Franquesa, A.; Juan, B.; Saldo, J. Targeted Analysis of Sea Buckthorn Oil Extracted by Accelerated Solvent Extraction Technique Using Green and Conventional Solvents. LWT 2022, 164, 113643. [Google Scholar] [CrossRef]
- Xue, Z.; Wan, F.; Gao, X.; Yu, W.; Zhang, Z.; Liu, J.; Kou, X. Extraction and Evaluation of Edible Oil from Schizochytrium Sp. Using an Aqueous Enzymatic Method. Front. Agric. Sci. Eng. 2021, 8, 623–634. [Google Scholar] [CrossRef]
- Zeng, W.; Endo, Y. Lipid Characteristics of Camellia Seed Oil. J. Oleo Sci. 2019, 68, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Li, Z.-G.; Gai, Q.-Y.; Li, X.-J.; Wei, F.-Y.; Fu, Y.-J.; Ma, W. Microwave-Assisted Aqueous Enzymatic Extraction of Oil from Pumpkin Seeds and Evaluation of Its Physicochemical Properties, Fatty Acid Compositions and Antioxidant Activities. Food Chem. 2014, 147, 17–24. [Google Scholar] [CrossRef]
- Rovaris, Â.A.; Dias, C.O.; da Cunha, I.P.; Scaff, R.M.C.; de Francisco, A.; Petkowicz, C.L.O.; Amante, E.R. Chemical Composition of Solid Waste and Effect of Enzymatic Oil Extraction on the Microstructure of Soybean (Glycine max). Ind. Crops Prod. 2012, 36, 405–414. [Google Scholar] [CrossRef]
- Chen, Z.; Shen, R.; Xie, J.; Zeng, Y.; Wang, K.; Zhao, L.; Liu, X.; Hu, Z. Multi-Frequency Ultrasonic-Assisted Enzymatic Extraction of Coconut Paring Oil from Coconut by-Products: Impact on the Yield, Physicochemical Properties, and Emulsion Stability. Ultrason. Sonochem. 2024, 109, 106996. [Google Scholar] [CrossRef]
- Solomakou, N.; Drosaki, A.M.; Christaki, S.; Kaderides, K.; Mourtzinos, I.; Goula, A.M. Valorization of Peach (Prunus persica L.) Peels and Seeds Using Ultrasound and Enzymatic Methods. Chem. Eng. Process. Process Intensif. 2024, 206, 110072. [Google Scholar] [CrossRef]
- Guo, X.; Wu, B.; Jiang, Y.; Zhang, Y.; Jiao, B.; Wang, Q. Improving Enzyme Accessibility in the Aqueous Enzymatic Extraction Process by Microwave-Induced Porous Cell Walls to Increase Oil Body and Protein Yields. Food Hydrocoll. 2024, 147, 109407. [Google Scholar] [CrossRef]
- Soto, C.; Chamy, R.; Zúñiga, M.E. Enzymatic Hydrolysis and Pressing Conditions Effect on Borage Oil Extraction by Cold Pressing. Food Chem. 2007, 102, 834–840. [Google Scholar] [CrossRef]
- Arroyo, B.Y.N.; Chacón, S.L.O.; Tacias-Pascacio, V.G.; Chac, G.E.O.; Canseco, C.V.; Gordillo, R.M.; Quintero, A.R. Aqueous Enzymatic Extraction of Oil from Microwave-Pretreated Jicaro Seeds. Curr. Biochem. Eng. 2019, 5, 42–49. [Google Scholar] [CrossRef]
- Zhu, F.; Wu, R.; Chen, B.; Zhang, F.; Chen, Y.; Cao, F.; Yu, P.; Su, E. Development of an Efficient Procedure for Preparing High Quality Camellia oleifera Seed Oil by Enzymatic Extraction and Demulsification. Ind. Crops Prod. 2024, 212, 118392. [Google Scholar] [CrossRef]
- Hu, B.; Wang, H.; He, L.; Li, Y.; Li, C.; Zhang, Z.; Liu, Y.; Zhou, K.; Zhang, Q.; Liu, A.; et al. A Method for Extracting Oil from Cherry Seed by Ultrasonic-Microwave Assisted Aqueous Enzymatic Process and Evaluation of Its Quality. J. Chromatogr. A 2019, 1587, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Topete-Betancourt, A.; Martínez-Flores, H.E.; Jiménez-Sandoval, S.J.; de Dios Figueroa-Cárdenas, J.; Virgen-Ortiz, J.J.; Valencia, J.E.; Garnica-Romo, M.G.; Gómez-Ayala, M.A. Ultrasound Assisted by Microwave during the Extraction of Avocado Oil: Quality Assessment by Chromatographic Techniques, Raman Spectroscopy, and Thermogravimetric Analysis. Pol. J. Chem. Technol. 2024, 26, 97–103. [Google Scholar] [CrossRef]
Enzyme | EC Number | Enzymatic Activity (U/mg) | Initial pH | Temperature (°C) | Oil Yield (%) |
---|---|---|---|---|---|
Cellulase | E.C.3.2.1.1 | ≥400 | 4 | 40 | 56.06 ± 0.52 g |
50 | 55.01 ± 0.97 g | ||||
5 | 40 | 50.16 ± 2.16 i | |||
50 | 49.47 ± 0.17 i | ||||
Alcalase | E.C.3.4.21.14 | ≥2.4 | 5 | 40 | 56.90 ± 0.58 f |
50 | 58.75 ±0.30 d | ||||
60 | 53.64 ±0.97 h | ||||
6 | 40 | 60.35 ± 1.09 c | |||
50 | 63.07± 0.98 b | ||||
60 | 64.19 ± 1.29 b | ||||
9 | 40 | 48.95 ± 1.05 i | |||
50 | 57.06 ± 0.33 f | ||||
60 | 61.93 ± 0.86 c | ||||
Viscozyme L | 4 | 50 | 58.36 ± 0.19 e | ||
60 | 59.28± 0.49 d | ||||
5 | 50 | 55.30 ± 0.54 g | |||
60 | 53.67 ± 0.42 h | ||||
Viscozyme L + Alcalase | 6 | 50 | 63.17 ± 0.25 b | ||
Alcalase + Viscozyme L | 6 | 50 | 66.72 ± 0.63 a |
Treatment | X1 | X2 | X3 | X4 | Oil Yield (%) | Predicted Values (%) |
---|---|---|---|---|---|---|
1 | 2.5 | 1.75 | 175 | 1:3.75 | 65.81 | 64.20 |
2 | 2.5 | 1.75 | 175 | 1:5.25 | 61.97 | 63.67 |
3 | 2.5 | 1.75 | 225 | 1:3.75 | 68.15 | 70.03 |
4 | 2.5 | 1.75 | 225 | 1:5.25 | 72.88 | 70.24 |
5 | 2.5 | 3.25 | 175 | 1:3.75 | 62.96 | 65.51 |
6 | 2.5 | 3.25 | 175 | 1:5.25 | 59.77 | 64.81 |
7 | 2.5 | 3.25 | 225 | 1:3.75 | 77.01 | 75.38 |
8 | 2.5 | 3.25 | 225 | 1:5.25 | 78.76 | 75.40 |
9 | 3.5 | 1.75 | 175 | 1:3.75 | 64.68 | 68.51 |
10 | 3.5 | 1.75 | 175 | 1:5.25 | 70.40 | 69.87 |
11 | 3.5 | 1.75 | 225 | 1:3.75 | 76.38 | 69.18 |
12 | 3.5 | 1.75 | 225 | 1:5.25 | 73.35 | 71.28 |
13 | 3.5 | 3.25 | 175 | 1:3.75 | 67.18 | 67.66 |
14 | 3.5 | 3.25 | 175 | 1:5.25 | 70.25 | 68.85 |
15 | 3.5 | 3.25 | 225 | 1:3.75 | 73.59 | 72.36 |
16 | 3.5 | 3.25 | 225 | 1:5.25 | 74.83 | 74.28 |
17 | 2 | 2.5 | 200 | 1:4.5 | 71.69 | 69.88 |
18 | 4 | 2.5 | 200 | 1:4.5 | 69.58 | 73.07 |
19 | 3 | 1 | 200 | 1:4.5 | 65.61 | 68.08 |
20 | 3 | 4 | 200 | 1:4.5 | 73.19 | 72.40 |
21 | 3 | 2.5 | 150 | 1:4.5 | 67.84 | 61.96 |
22 | 3 | 2.5 | 250 | 1:4.5 | 65.67 | 73.23 |
23 | 3 | 2.5 | 200 | 1:3 | 67.18 | 67.80 |
24 | 3 | 2.5 | 200 | 1:6 | 68.12 | 69.19 |
25 | 3 | 2.5 | 200 | 1:4.5 | 72.92 | 74.26 |
26 | 3 | 2.5 | 200 | 1:4.5 | 75.34 | 74.26 |
27 | 3 | 2.5 | 200 | 1:4.5 | 74.86 | 74.26 |
28 | 3 | 2.5 | 200 | 1:4.5 | 73.90 | 74.26 |
Variable | Effect | Standard Deviation | t-Value | p-Value |
---|---|---|---|---|
Mean/Interc. * | 74.25787 | 0.537278 | 138.2112 | 0.000001 |
(1) Amount of enzyme (%) (L) * | 1.59629 | 0.438686 | 3.6388 | 0.035772 |
Amount of enzyme (%) (Q) | −1.39049 | 0.438686 | −3.1697 | 0.050494 |
(2) Incubation time (h) (L) * | 2.15754 | 0.438686 | 4.9182 | 0.016103 |
Incubation time (h) (Q) * | −2.00624 | 0.438686 | −4.5733 | 0.019618 |
(3) Agitation rate (rpm) (L) * | 5.63454 | 0.438686 | 12.8441 | 0.001018 |
Agitation rate (rpm) (Q) * | −3.32774 | 0.438686 | −7.5857 | 0.004753 |
(4) Solid-to-liquid ratio (L) | 0.69438 | 0.438686 | 1.5829 | 0.211611 |
Solid-to-liquid ratio (Q) * | −2.88186 | 0.438686 | −6.5693 | 0.007175 |
1 L by 2 L | −1.08156 | 0.537278 | −2.0130 | 0.137578 |
1 L by 3 L * | −2.58206 | 0.537278 | −4.8058 | 0.017151 |
1 L by 4 L | 0.94481 | 0.537278 | 1.7585 | 0.176900 |
2 L by 3 L * | 2.01531 | 0.537278 | 3.7510 | 0.033094 |
2 L by 4 L | −0.08706 | 0.537278 | −0.1620 | 0.881571 |
3 L by 4 L | 0.36569 | 0.537278 | 0.6806 | 0.544930 |
Physicochemical Properties | SE | AEE |
---|---|---|
Acid value (mg KOH/g oil) | 5.77 ± 0.07 a | 2.02 ± 0.04 b |
Peroxide value (meq O2/kg oil) | 150 ± 0.02 a | 40 ± 0.01 a |
Iodine value (g I2/100 g) | 39.17 ± 0.03 a | 39.97 ± 0.02 a |
Saponification value (mg KOH/g oil) | 159.92 ± 0.2 b | 168.33 ± 0.07 a |
Oxidative stability (h) | 4.91 ± 0.03 b | 11.83 ± 0.05 a |
Variables | Name | Coded Levels | ||||
---|---|---|---|---|---|---|
−2 | −1 | 0 | 1 | 2 | ||
X1 | Amount of enzyme (%) | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 |
X2 | Incubation time (h) | 1.0 | 1.75 | 2.5 | 3.25 | 4.0 |
X3 | Agitation rate (rpm) | 150 | 175 | 200 | 225 | 250 |
X4 | Solid-to-liquid ratio (w/w) | 1:3 | 1:3.75 | 1:4.5 | 1:5.25 | 1:6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Pérez, L.; Castañeda-Valbuena, D.; Rosales-Quintero, A.; Santiz-Gómez, J.A.; Zimmermann, V.; Virgen-Ortiz, J.J.; Galindo-Ramírez, S.; Fernandez-Lafuente, R.; Rodrigues, R.C.; Tacias-Pascacio, V. Evaluation of Aqueous Enzymatic Extraction for Obtaining Oil from Thevetia peruviana Seeds. Catalysts 2025, 15, 628. https://doi.org/10.3390/catal15070628
Domínguez-Pérez L, Castañeda-Valbuena D, Rosales-Quintero A, Santiz-Gómez JA, Zimmermann V, Virgen-Ortiz JJ, Galindo-Ramírez S, Fernandez-Lafuente R, Rodrigues RC, Tacias-Pascacio V. Evaluation of Aqueous Enzymatic Extraction for Obtaining Oil from Thevetia peruviana Seeds. Catalysts. 2025; 15(7):628. https://doi.org/10.3390/catal15070628
Chicago/Turabian StyleDomínguez-Pérez, Luis, Daniel Castañeda-Valbuena, Arnulfo Rosales-Quintero, José Alfredo Santiz-Gómez, Vinicius Zimmermann, José Juan Virgen-Ortiz, Sergio Galindo-Ramírez, Roberto Fernandez-Lafuente, Rafael C. Rodrigues, and Veymar Tacias-Pascacio. 2025. "Evaluation of Aqueous Enzymatic Extraction for Obtaining Oil from Thevetia peruviana Seeds" Catalysts 15, no. 7: 628. https://doi.org/10.3390/catal15070628
APA StyleDomínguez-Pérez, L., Castañeda-Valbuena, D., Rosales-Quintero, A., Santiz-Gómez, J. A., Zimmermann, V., Virgen-Ortiz, J. J., Galindo-Ramírez, S., Fernandez-Lafuente, R., Rodrigues, R. C., & Tacias-Pascacio, V. (2025). Evaluation of Aqueous Enzymatic Extraction for Obtaining Oil from Thevetia peruviana Seeds. Catalysts, 15(7), 628. https://doi.org/10.3390/catal15070628