Rational Design of Nanosized Pt Immobilized on Biomass-Derived Porous Carbon for Enhanced Methanol Oxidation
Abstract
1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Preparation of Biomass-Derived Porous Carbon (BPC)
3.2. Preparation of the Pt/BPC Nanoarchitecture
3.3. Characterizations
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DMFCs | direct methanol fuel cells |
3D | three-dimensional |
MOR | methanol oxidation reaction |
ECSA | electrochemical active surface area |
RGO | reduced graphene oxide |
References
- He, Q.; Sheng, B.; Zhu, K.; Zhou, Y.; Qiao, S.; Wang, Z.; Song, L. Phase Engineering and Synchrotron-Based Study on Two-Dimensional Energy Nanomaterials. Chem. Rev. 2023, 123, 10750–10807. [Google Scholar] [CrossRef]
- Dai, S.; Li, M.; Li, H.; Shi, Y.; Zhang, H.; Wang, D.; Xiang, K.; Zou, J.; Luo, G. Advancements in Electrocatalytic Methanol Oxidation: Catalyst Design, Reaction Mechanisms, and Renewable Energy Applications. ChemSusChem 2025, 18, e202402767. [Google Scholar] [CrossRef] [PubMed]
- Dubale, A.A.; Zheng, Y.; Wang, H.; Hübner, R.; Li, Y.; Yang, J.; Zhang, J.; Sethi, N.K.; He, L.; Zheng, Z.; et al. High-Performance Bismuth-Doped Nickel Aerogel Electrocatalyst for the Methanol Oxidation Reaction. Angew. Chem. Int. Ed. 2020, 59, 13891–13899. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Wang, Y.; Yang, C.; Yang, L.; Zhang, C.; Jiang, Q.; He, H.; Ying, G.; Huang, H. Confining Rhodium Nanocrystals into Polyaniline Nanorod-Embedded Mxene Nanoarchitectures Enables Efficient Methanol Electrooxidation. J. Colloid Interface Sci. 2025, 695, 137809. [Google Scholar] [CrossRef]
- Qin, J.; Huang, H.; Zhang, J.; Zhu, F.; Luo, L.; Zhang, C.; Yang, L.; Jiang, Q.; He, H. Stereoassembly of Ultrasmall Rh-Decorated Zeolite Imidazolate Framework–Mxene Heterostructures for Boosted Methanol Oxidation Reaction. J. Mater. Chem. A 2023, 11, 2848–2856. [Google Scholar] [CrossRef]
- Shen, B.; Feng, Y.; Wang, Y.; Sun, P.; Yang, L.; Jiang, Q.; He, H.; Huang, H. Holey Mxene Nanosheets Intimately Coupled with Ultrathin Ni–Fe Layered Double Hydroxides for Boosted Hydrogen and Oxygen Evolution Reactions. Carbon 2023, 212, 118141. [Google Scholar] [CrossRef]
- Shen, B.; Huang, H.; Jiang, Y.; Xue, Y.; He, H. 3D Interweaving Mxene–Graphene Network–Confined Ni–Fe Layered Double Hydroxide Nanosheets for Enhanced Hydrogen Evolution. Electrochim. Acta 2022, 407, 139913. [Google Scholar] [CrossRef]
- Huang, H.; Xue, Y.; Xie, Y.; Yang, Y.; Yang, L.; He, H.; Jiang, Q.; Ying, G. MoS2 Quantum Dot-Decorated Mxene Nanosheets as Efficient Hydrogen Evolution Electrocatalysts. Inorg. Chem. Front. 2022, 9, 1171–1178. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, Q.; Yang, X.; Zhang, C.; Zhang, J.; Yang, L.; He, H.; Ying, G.; Huang, H. Heterointerface Engineering of Rhombic Rh Nanosheets Confined on Mxene for Efficient Methanol Oxidation. J. Energy Chem. 2024, 93, 419–428. [Google Scholar] [CrossRef]
- Mansor, M.; Timmiati, S.N.; Lim, K.L.; Wong, W.Y.; Kamarudin, S.K.; Nazirah Kamarudin, N.H. Recent Progress of Anode Catalysts and Their Support Materials for Methanol Electrooxidation Reaction. Int. J. Hydrogen Energy 2019, 44, 14744–14769. [Google Scholar] [CrossRef]
- Meenu, P.C.; Roy, S. Rationalizing Descriptors for Electrocatalysts in Methanol Oxidation Reaction. Catal. Today 2024, 439, 114802. [Google Scholar] [CrossRef]
- Zuo, Y.; Sheng, W.; Tao, W.; Li, Z. Direct Methanol Fuel Cells System–a Review of Dual-Role Electrocatalysts for Oxygen Reduction and Methanol Oxidation. J. Mater. Sci. Technol. 2022, 114, 29–41. [Google Scholar] [CrossRef]
- Chen, S.; Li, M.; Gao, M.; Jin, J.; van Spronsen, M.A.; Salmeron, M.B.; Yang, P. High-Performance Pt–Co Nanoframes for Fuel-Cell Electrocatalysis. Nano Lett. 2020, 20, 1974–1979. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Jiang, Z.; Wu, R.; Liu, Y.; Huang, L.; Hu, N.; Tsiakaras, P.; Shen, P.K. Cross-Double Dumbbell-Like Pt–Ni Nanostructures with Enhanced Catalytic Performance toward the Reactions of Oxygen Reduction and Methanol Oxidation. Appl. Catal. B Environ. 2019, 246, 277–283. [Google Scholar] [CrossRef]
- He, T.; Wang, W.; Shi, F.; Yang, X.; Li, X.; Wu, J.; Yin, Y.; Jin, M. Mastering the Surface Strain of Platinum Catalysts for Efficient Electrocatalysis. Nature 2021, 598, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Duanmu, K.; Wan, C.; Cheng, T.; Zhang, L.; Dai, S.; Chen, W.; Zhao, Z.; Li, P.; Fei, H.; et al. Single-Atom Tailoring of Platinum Nanocatalysts for High-Performance Multifunctional Electrocatalysis. Nat. Catal. 2019, 2, 495–503. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, X.; Wang, X.; Hu, J.; Liu, Y.; Fu, G.; Tang, Y. Concave Ptco Nanocrosses for Methanol Oxidation Reaction. Appl. Catal. B Environ. 2020, 277, 119135. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, W.; Ji, Y.; Chen, B.; Fu, G.; Yun, Q.; Chen, S.; Lin, Y.; Yin, P.-F.; Cui, X.; et al. Hydrogen-Intercalation-Induced Lattice Expansion of Pd@Pt Core–Shell Nanoparticles for Highly Efficient Electrocatalytic Alcohol Oxidation. J. Am. Chem. Soc. 2021, 143, 11262–11270. [Google Scholar] [CrossRef]
- Poerwoprajitno, A.R.; Gloag, L.; Watt, J.; Cheong, S.; Tan, X.; Lei, H.; Tahini, H.A.; Henson, A.; Subhash, B.; Bedford, N.M.; et al. A Single-Pt-Atom-on-Ru-Nanoparticle Electrocatalyst for Co-Resilient Methanol Oxidation. Nat. Catal. 2022, 5, 231–237. [Google Scholar] [CrossRef]
- Tong, Y.; Yan, X.; Liang, J.; Dou, S.X. Metal-Based Electrocatalysts for Methanol Electro-Oxidation: Progress, Opportunities, and Challenges. Small 2021, 17, 1904126. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, X.; Diao, P.; Liao, J.; Chong, Z.; Yao, C.; Ma, Z.; Li, G. Highly Dispersed Pt on Tiox Embedded in Porous Carbon as Electrocatalyst for Hydrogen Evolution Reaction. Catalysts 2025, 15, 487. [Google Scholar] [CrossRef]
- Ali, A.; Shen, P.K. Recent Advances in Graphene-Based Platinum and Palladium Electrocatalysts for the Methanol Oxidation Reaction. J. Mater. Chem. A 2019, 7, 22189–22217. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Karuppannan, M.; Vinothkannan, M.; Ramachandran, K.; Kwon, O.J.; Yoo, D.J. Ultrafine Pt Nanoparticles Stabilized by MoS2/N-Doped Reduced Graphene Oxide as a Durable Electrocatalyst for Alcohol Oxidation and Oxygen Reduction Reactions. ACS Appl. Mater. Interfaces 2019, 11, 12504–12515. [Google Scholar] [CrossRef]
- Tan, Q.; Shu, C.; Abbott, J.; Zhao, Q.; Liu, L.; Qu, T.; Chen, Y.; Zhu, H.; Liu, Y.; Wu, G. Highly Dispersed Pd-CeO2 Nanoparticles Supported on N-Doped Core–Shell Structured Mesoporous Carbon for Methanol Oxidation in Alkaline Media. ACS Catal. 2019, 9, 6362–6371. [Google Scholar] [CrossRef]
- Hou, C.; Yuan, W.; Zhang, Y.; Zhang, Y.; Zhang, X. A Hybrid Cathode Catalytic Layer Composed of M–N–C and Pt/C for Direct Methanol Fuel Cells with High Methanol Tolerance. Fuel 2024, 368, 131553. [Google Scholar] [CrossRef]
- Li, J.; Yang, F.; Feng, L. Progress of Supported Pt-Based Catalysts for Electrochemical Methanol Energy Conversion. Coord. Chem. Rev. 2025, 534, 216603. [Google Scholar] [CrossRef]
- Ren, X.; Lv, Q.; Liu, L.; Liu, B.; Wang, Y.; Liu, A.; Wu, G. Current Progress of Pt and Pt-Based Electrocatalysts Used for Fuel Cells. Sustain. Energy Fuels 2020, 4, 15–30. [Google Scholar] [CrossRef]
- Huang, H.; Guo, X.; Jiang, Q.; He, H.; Yang, L.; Zhang, C.; Ying, G.; Xu, X. Space-Confined Growth of Monodisperse Pt within Nitrogen-Doped Mesostructured Hexagonal Prism Carbon Nanoarchitectures for Boosted Methanol Oxidation Reaction. Chem. Eng. J. 2025, 511, 161570. [Google Scholar] [CrossRef]
- Huang, H.; Wei, Y.; Yang, Y.; Yan, M.; He, H.; Jiang, Q.; Yang, X.; Zhu, J. Controllable Synthesis of Grain Boundary-Enriched Pt Nanoworms Decorated on Graphitic Carbon Nanosheets for Ultrahigh Methanol Oxidation Catalytic Activity. J. Energy Chem. 2021, 57, 601–609. [Google Scholar] [CrossRef]
- Lan, Y.; He, H.; Liu, C.; Qin, J.; Luo, L.; Zhu, F.; Zhao, Y.; Zhang, J.; Yang, L.; Huang, H. Ultrasmall Pd Nanocrystals Confined into Co-Based Metal Organic Framework-Decorated Mxene Nanoarchitectures for Efficient Methanol Electrooxidation. J. Power Sources 2024, 603, 234438. [Google Scholar] [CrossRef]
- Yue, L.; Jiang, Q.; Ma, L.; Li, Y.; Yang, L.; Zhang, J.; He, H.; Huang, H. Confined Palladium Nanocrystals within Covalent Organic Framework-Intercalated Mxene Nanoarchitectures toward Highly Efficient Methanol Electrooxidation. Chem. Mater. 2025, 37, 2125–2135. [Google Scholar] [CrossRef]
- Zhu, Z.; Qin, J.; Yang, Q.; He, H.; Yang, L.; Huang, H.; Ying, G. Interconnected Pd Nanowire Networks Stereoassembled on Biomass-Derived Porous Carbon Skeletons as Bifunctional Electrocatalysts for Efficient Methanol and Formic Acid Oxidation. ACS Sustain. Chem. Eng. 2024, 12, 10615–10623. [Google Scholar] [CrossRef]
- Bao, J.; Yang, G.; Yoneyama, Y.; Tsubaki, N. Significant Advances in C1 Catalysis: Highly Efficient Catalysts and Catalytic Reactions. ACS Catal. 2019, 9, 3026–3053. [Google Scholar] [CrossRef]
- Bi, Z.; Kong, Q.; Cao, Y.; Sun, G.; Su, F.; Wei, X.; Li, X.; Ahmad, A.; Xie, L.; Chen, C.-M. Biomass-Derived Porous Carbon Materials with Different Dimensions for Supercapacitor Electrodes: A Review. J. Mater. Chem. A 2019, 7, 16028–16045. [Google Scholar] [CrossRef]
- Chen, Q.; Tan, X.; Liu, Y.; Liu, S.; Li, M.; Gu, Y.; Zhang, P.; Ye, S.; Yang, Z.; Yang, Y. Biomass-Derived Porous Graphitic Carbon Materials for Energy and Environmental Applications. J. Mater. Chem. A 2020, 8, 5773–5811. [Google Scholar] [CrossRef]
- Guan, H.; Wang, Q.; Wu, X.; Pang, J.; Jiang, Z.; Chen, G.; Dong, C.; Wang, L.; Gong, C. Biomass Derived Porous Carbon (Bpc) and Their Composites as Lightweight and Efficient Microwave Absorption Materials. Compos. Part B Eng. 2021, 207, 108562. [Google Scholar] [CrossRef]
- Kaur, P.; Verma, G.; Sekhon, S.S. Biomass Derived Hierarchical Porous Carbon Materials as Oxygen Reduction Reaction Electrocatalysts in Fuel Cells. Prog. Mater Sci. 2019, 102, 1–71. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, X.-L.; Yang, Y.-L.; Suo, G.; Zhang, L.; Lu, S.; Chen, Z.-G. Biomass-Derived Carbon for High-Performance Batteries: From Structure to Properties. Adv. Funct. Mater. 2022, 32, 2201584. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Shen, X.; Wang, H.; Wang, H.; Xia, K.; Yin, Z.; Zhang, Y. Biomass-Derived Carbon Materials: Controllable Preparation and Versatile Applications. Small 2021, 17, 2008079. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, G.; Hu, Y.; Wang, J.; Sun, T.; Regier, T.; Qiao, J.; Sun, S. Graphitic-Shell Encapsulated Feni Alloy/Nitride Nanocrystals on Biomass-Derived N-Doped Carbon as an Efficient Electrocatalyst for Rechargeable Zn-Air Battery. Carbon Energy 2021, 3, 176–187. [Google Scholar] [CrossRef]
- Huang, H.; Guo, X.; Yan, M.; Meng, W.; Xue, Y.; Xiao, D.; Jiang, Q.; Yang, L.; He, H. Well-Dispersive Pt Nanoparticles Grown on 3D Nitrogen- and Sulfur-Codoped Graphene Nanoribbon Architectures: Highly Active Electrocatalysts for Methanol Oxidation. Mater. Today Energy 2021, 21, 100814. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, M.-M.; Du, W.-F.; Yin, C.-Y.; Zhang, J.; Yang, L.; Kang, Y.-Q.; He, H.-Y.; Huang, H.-J. Spatial Construction of Ultrasmall Pt-Decorated 3D Spinel Oxide-Modified N-Doped Graphene Nanoarchitectures as High-Efficiency Methanol Oxidation Electrocatalysts. Rare Met. 2024, 43, 186–197. [Google Scholar] [CrossRef]
- Bhuvanendran, N.; Ravichandran, S.; Zhang, W.; Ma, Q.; Xu, Q.; Khotseng, L.; Su, H. Highly Efficient Methanol Oxidation on Durable Ptxir/Mwcnt Catalysts for Direct Methanol Fuel Cell Applications. Int. J. Hydrogen Energy 2020, 45, 6447–6460. [Google Scholar] [CrossRef]
- Zhou, H.; Xiong, W.; Shakouri, A.; Lu, Y.; Regalbuto, J.R.; Monnier, J.R.; Tengco, J.M.M. Precision Size Control of Supported Pd and Pt Nanoparticles Via Controlled Electroless Deposition. Catalysts 2025, 15, 156. [Google Scholar] [CrossRef]
- Gu, Z.; Bin, D.; Feng, Y.; Zhang, K.; Wang, J.; Yan, B.; Li, S.; Xiong, Z.; Wang, C.; Shiraishi, Y.; et al. Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation. Appl. Surf. Sci. 2017, 411, 379–385. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, Y.; Zhang, X.; Dai, X.; Zhuo, H.; Luan, C.; Jiang, Y.; Zhao, H.; Wang, H.; Huang, X. Promoting Effect of Rickel Hydroxide on the Electrocatalytic Performance of Pt in Alkaline Solution. Dalton Trans. 2018, 47, 7975–7982. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Zhai, C.; Zhu, M.; Wang, C.; Wang, H.; Bin, D.; Guo, J.; Yang, P.; Du, Y. Facile synthesis of PtAu nanoparticles supported on polydopamine reduced and modified graphene oxide as a highly active catalyst for methanol oxidation. Electrochimica Acta 2015, 153, 175–183. [Google Scholar] [CrossRef]
- Tu, W.; Sun, Y.; Wu, D.; Wang, H.; Huang, H.; Shao, M.; Liu, Y.; Kang, Z. Cobalt Oxyhydroxide and Carbon Dots Modified by Platinum as Superior Electrocatalyst for Methanol Oxidation. Mater. Chem. Phys. 2019, 225, 64–71. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, X.; Wang, Q.; Han, Y.; Fang, Y.; Dong, S. Shape-Control of Pt–Ru Nanocrystals: Tuning Surface Structure for Enhanced Electrocatalytic Methanol Oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Cheng, Y.; Lv, H.; Zhang, B.; Ji, G.; Du, Y. Achieving Sustainable Ultralight Electromagnetic Absorber from Flour by Turning Surface Morphology of Nanoporous Carbon. ACS Sustain. Chem. Eng. 2018, 6, 15850–15857. [Google Scholar] [CrossRef]
- Zhao, H.; Cheng, Y.; Ma, J.; Zhang, Y.; Ji, G.; Du, Y. A Sustainable Route from Biomass Cotton to Construct Lightweight and High-Performance Microwave Absorber. Chem. Eng. J. 2018, 339, 432–441. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, X.; Li, Y.; Feng, W.; Qin, J.; Zhang, X.; Wang, G.; He, H. Rational Design of Nanosized Pt Immobilized on Biomass-Derived Porous Carbon for Enhanced Methanol Oxidation. Catalysts 2025, 15, 949. https://doi.org/10.3390/catal15100949
Shan X, Li Y, Feng W, Qin J, Zhang X, Wang G, He H. Rational Design of Nanosized Pt Immobilized on Biomass-Derived Porous Carbon for Enhanced Methanol Oxidation. Catalysts. 2025; 15(10):949. https://doi.org/10.3390/catal15100949
Chicago/Turabian StyleShan, Xinggang, Yanan Li, Wei Feng, Jinlong Qin, Xinyi Zhang, Gangqiang Wang, and Haiyan He. 2025. "Rational Design of Nanosized Pt Immobilized on Biomass-Derived Porous Carbon for Enhanced Methanol Oxidation" Catalysts 15, no. 10: 949. https://doi.org/10.3390/catal15100949
APA StyleShan, X., Li, Y., Feng, W., Qin, J., Zhang, X., Wang, G., & He, H. (2025). Rational Design of Nanosized Pt Immobilized on Biomass-Derived Porous Carbon for Enhanced Methanol Oxidation. Catalysts, 15(10), 949. https://doi.org/10.3390/catal15100949