Photocatalytic NO Removal by Ternary Composites Bi12GeO20/BiOCl/W18O49 Using a Waste Reutilization Strategy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microstructural and Morphological Characterization
2.2. Photocatalytic NO Removal Performance
3. Materials and Methods
3.1. Catalysts Fabrication
3.2. Photocatalytic NO Removal and Entrapping Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, N.; Wang, C.; Zhang, K.; Lv, H.; Yuan, M.; Bahnemann, D.W. Progress and Prospects of Photocatalytic Conversion of Low-Concentration NO. Chin. J. Catal. 2022, 43, 2363–2387. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, M.; Jiang, L.; Cao, J.; Li, H.; Lee, S.C.; Huang, Y. Oxygen Vacancy Engineering of Photocatalytic Nanomaterials for Enrichment, Activation, and Efficient Removal of Nitrogen Oxides with High Selectivity: A Review. Environ. Chem. Lett. 2022, 20, 3905–3925. [Google Scholar] [CrossRef]
- Ma, C.; Wei, J.; Jiang, K.; Chen, J.; Yang, Z.; Yang, X.; Yu, G.; Zhang, C.; Li, X. Typical Layered Structure Bismuth-Based Photocatalysts for Photocatalytic Nitrogen Oxides Oxidation. Sci. Total Environ. 2023, 855, 158644. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Pöschl, U. Chemists Can Help to Solve the Air-Pollution Health Crisis. Nature 2017, 551, 291–293. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, Y.; Zhang, J.; Liu, Z.; Wang, L.; Tian, S.; Tang, G.; Gao, W.; Ji, D.; Song, T.; et al. Redefining the Importance of Nitrate during Haze Pollution to Help Optimize an Emission Control Strategy. Atmos. Environ. 2016, 141, 197–202. [Google Scholar] [CrossRef]
- Binas, V.; Venieri, D.; Kotzias, D.; Kiriakidis, G. Modified TiO2 Based Photocatalysts for Improved Air and Health Quality. J. Mater. 2017, 3, 3–16. [Google Scholar] [CrossRef]
- Serpone, N. Heterogeneous Photocatalysis and Prospects of TiO2-Based Photocatalytic DeNOxing the Atmospheric Environment. Catalysts 2018, 8, 553. [Google Scholar] [CrossRef]
- Deorsola, F.A.; Andreoli, S.; Armandi, M.; Bonelli, B.; Pirone, R. Unsupported Nanostructured Mn Oxides Obtained by Solution Combustion Synthesis: Textural and Surface Properties, and Catalytic Performance in NOx SCR at Low Temperature. Appl. Catal. A Gen. 2016, 522, 120–129. [Google Scholar] [CrossRef]
- Guo, M.-Z.; Ling, T.-C.; Poon, C.S. Highly-Efficient Green Photocatalytic Cementitious Materials with Robust Weathering Resistance: From Laboratory to Application. Environ. Pollut. 2021, 273, 116510. [Google Scholar] [CrossRef]
- Hu, W.; Gao, X.; Deng, Y.; Qu, R.; Zheng, C.; Zhu, X.; Cen, K. Deactivation Mechanism of Arsenic and Resistance Effect of SO42− on Commercial Catalysts for Selective Catalytic Reduction of NO with NH3. Chem. Eng. J. 2016, 293, 118–128. [Google Scholar] [CrossRef]
- Gao, M.; Hu, X.; Wang, C.; Fei, Y.; Li, Z.; Xie, H.; Yang, M. Iron Mediated n → Π* Electron Transitions and Mid-Gap States Formation in CN under Low-Temperature Secondary Calcination Enhances Photodegradation of Organic Pollutants. Sep. Purif. Technol. 2025, 357, 130223. [Google Scholar] [CrossRef]
- Dong, X.; Cui, W.; Wang, H.; Li, J.; Sun, Y.; Wang, H.; Zhang, Y.; Huang, H.; Dong, F. Promoting Ring-Opening Efficiency for Suppressing Toxic Intermediates during Photocatalytic Toluene Degradation via Surface Oxygen Vacancies. Sci. Bull. 2019, 64, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Hu, X.; Tian, T.; Cai, B.; Li, Y. Carbon Pre-Protected Iron Strategy to Construct Fe, C-Codoped g-C3N4 for Effective Photodegradation of Organic Pollutants via Hole Oxidation Mechanism. J. Clean. Prod. 2024, 437, 140739. [Google Scholar] [CrossRef]
- Fragoso, J.; Barreca, D.; Bigiani, L.; Gasparotto, A.; Sada, C.; Lebedev, O.I.; Modin, E.; Pavlovic, I.; Sánchez, L.; Maccato, C. Enhanced Photocatalytic Removal of NOx Gases by β-Fe2O3/CuO and β-Fe2O3/WO3 Nanoheterostructures. Chem. Eng. J. 2022, 430, 132757. [Google Scholar] [CrossRef]
- Li, K.; Zhou, W.; Li, X.; Li, Q.; Carabineiro, S.A.C.; Zhang, S.; Fan, J.; Lv, K. Synergistic Effect of Cyano Defects and CaCO3 in Graphitic Carbon Nitride Nanosheets for Efficient Visible-Light-Driven Photocatalytic NO Removal. J. Hazard. Mater. 2023, 442, 130040. [Google Scholar] [CrossRef]
- Maggos, T.; Bartzis, J.G.; Leva, P.; Kotzias, D. Application of Photocatalytic Technology for NOx Removal. Appl. Phys. A 2007, 89, 81–84. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Y.; Jiang, G.; Zhang, Y.; Huang, H.; Wu, Z.; Lee, S.C.; Dong, F. Unraveling the Mechanisms of Visible Light Photocatalytic NO Purification on Earth-Abundant Insulator-Based Core–Shell Heterojunctions. Environ. Sci. Technol. 2018, 52, 1479–1487. [Google Scholar] [CrossRef]
- Lasek, J.; Yu, Y.-H.; Wu, J.C.S. Removal of NOx by Photocatalytic Processes. J. Photochem. Photobiol. C Photochem. Rev. 2013, 14, 29–52. [Google Scholar] [CrossRef]
- Leson, G.; Winer, A.M. Biofiltration: An Innovative Air Pollution Control Technology For VOC Emissions. J. Air Waste Manag. Assoc. 1991, 41, 1045–1054. [Google Scholar] [CrossRef]
- Popp, D. International Innovation and Diffusion of Air Pollution Control Technologies: The Effects of NOX and SO2 Regulation in the US, Japan, and Germany. J. Environ. Econ. Manag. 2006, 51, 46–71. [Google Scholar] [CrossRef]
- Rao, F.; An, Y.; Huang, X.; Zhu, L.; Gong, S.; Shi, X.; Lu, J.; Gao, J.; Huang, Y.; Wang, Q.; et al. “X-Scheme” Charge Separation Induced by Asymmetrical Localized Electronic Band Structures at the Ceria Oxide Facet Junction. ACS Catal. 2023, 13, 2523–2533. [Google Scholar] [CrossRef]
- Wang, H.; Li, K.; Li, J.; Sun, Y.; Dong, F. Photochemical Transformation Pathways of Nitrates from Photocatalytic NOx Oxidation: Implications for Controlling Secondary Pollutants. Environ. Sci. Technol. Lett. 2021, 8, 873–877. [Google Scholar] [CrossRef]
- Kuppusamy, M.; Kim, S.-W.; Lee, K.-P.; Jo, Y.J.; Kim, W.-J. Development of TiO2–CaCO3 Based Composites as an Affordable Building Material for the Photocatalytic Abatement of Hazardous NOx from the Environment. Nanomaterials 2024, 14, 136. [Google Scholar] [CrossRef]
- Kuppusamy, M.; Passi, M.; Sundaram, S.K.; Vadivel, G.; Rathinasamy, M.; Lee, K.-P.; Kim, W.-J. Synergistic Effect of Li, La Co-Doping on Photocatalytic Activity of BaTiO3 Ferroelectric Material for Effective Degradation of Toxic NOx for Environmental Remediation. J. Environ. Chem. Eng. 2024, 12, 112801. [Google Scholar] [CrossRef]
- Cremades, A.; Santos, M.T.; Remón, A.; García, J.A.; Diéguez, E.; Piqueras, J. Cathodoluminescence and Photoluminescence in the Core Region of Bi12GeO20 and Bi12SiO20 Crystals. J. Appl. Phys. 1996, 79, 7186–7190. [Google Scholar] [CrossRef]
- De Mello, A.C.S.; Santana, G.C.; Jackson, R.A.; Macedo, Z.S.; Moreira, S.G.C.; Valerio, M.E.G. Optical Properties of Pure and Cr3+ Doped BGO Ceramic Scintillators. Phys. Status Solidi (c) 2007, 4, 980–983. [Google Scholar] [CrossRef]
- Moraes, C.G.P.; Jesus, F.A.A.; Macedo, Z.S. Electrical and Dielectric Characterization of Bi12GeO20 Prepared by Modified Pechini Method. Adv. Condens. Matter Phys. 2014, 2014, 968349. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, G. Controlled Synthesis and Visible Light Photocatalytic Activity of Bi12GeO20 Uniform Microcrystals. Sci. Rep. 2014, 4, 6298. [Google Scholar] [CrossRef]
- Chen, Y.; Fang, J.; Lu, S.; Cen, C.; Cheng, C.; Ren, L.; Feng, W.; Fang, Z. Hydrothermal Synthesis of a Ba and Mg Co-Doped Bi12GeO20 Photocatalyst with Enhanced Visible Light Catalytic Activity. RSC Adv. 2016, 6, 15745–15752. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, G.; Wu, X.; Yin, S. Novel Visible-Light-Driven Z-Scheme Bi12GeO20/g-C3N4 Photocatalyst: Oxygen-Induced Pathway of Organic Pollutants Degradation and Proton Assisted Electron Transfer Mechanism of Cr(VI) Reduction. Appl. Catal. B Environ. 2017, 207, 17–26. [Google Scholar] [CrossRef]
- Chang, F.; Zhang, X.; Yang, C.; Peng, S.; Hu, X. Ag Nanoparticles-Embellished Bi12GeO20 Composites: A Plasmonic System Featured with Reinforced Visible-Light Photocatalytic Performance and Ultra-Stability. Appl. Surf. Sci. 2020, 527, 146946. [Google Scholar] [CrossRef]
- Chang, F.; Wang, X.; Zhao, S.; Zhang, X.; Hu, X. Fabrication of Bi12GeO20/Bi2S3 Hybrids with Surface Oxygen Vacancies by a Facile CS2–Mediated Manner and Enhanced Photocatalytic Performance in Water and Saline Water. Sep. Purif. Technol. 2022, 287, 120532. [Google Scholar] [CrossRef]
- Wang, M.; Tan, G.; Dang, M.; Wang, Y.; Zhang, B.; Ren, H.; Lv, L.; Xia, A. Dual Defects and Build-in Electric Field Mediated Direct Z-Scheme W18O49/g-C3N4−x Heterojunction for Photocatalytic NO Removal and Organic Pollutant Degradation. J. Colloid Interface Sci. 2021, 582, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, J.; Fang, Y.; Zhang, M.; Liu, K.; Dong, B. A Nonmetal Plasmonic Z-Scheme Photocatalyst with UV- to NIR-Driven Photocatalytic Protons Reduction. Adv. Mater. 2017, 29, 1606688. [Google Scholar] [CrossRef]
- Nie, Q.; Jia, L.; Luan, J.; Cui, Y.; Liu, J.; Tan, Z.; Yu, H. Graphene Quantum Dots/BiOCl Visible-Light Active Photocatalyst for Degradation of NO. Chem. Eng. Sci. 2024, 285, 119614. [Google Scholar] [CrossRef]
- Yang, Y.; Mao, J.; Yin, D.; Zhang, T.; Liu, C.; Hao, W.; Wang, Y.; Hao, J. Synergy of S-Vacancy and Heterostructure in BiOCl/Bi2S3−x Boosting Room-Temperature NO2 Sensing. J. Hazard. Mater. 2023, 455, 131591. [Google Scholar] [CrossRef]
- Liu, W.; Li, J.; Zheng, J.; Song, Y.; Shi, Z.; Lin, Z.; Chai, L. Different Pathways for Cr(III) Oxidation: Implications for Cr(VI) Reoccurrence in Reduced Chromite Ore Processing Residue. Environ. Sci. Technol. 2020, 54, 11971–11979. [Google Scholar] [CrossRef]
- Shan, Z.; Yang, Y.; Shi, H.; Zhu, J.; Tan, X.; Luan, Y.; Jiang, Z.; Wang, P.; Qin, J. Hollow Dodecahedra Graphene Oxide- Cuprous Oxide Nanocomposites with Effective Photocatalytic and Bactericidal Activity. Front. Chem. 2021, 9, 755836. [Google Scholar] [CrossRef]
- Sun, L.; Jiang, Z.; Yuan, B.; Zhi, S.; Zhang, Y.; Li, J.; Wu, A. Ultralight and Superhydrophobic Perfluorooctyltrimethoxysilane Modified Biomass Carbonaceous Aerogel for Oil-Spill Remediation. Chem. Eng. Res. Des. 2021, 174, 71–78. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, J.; Ou, X.; Liu, X.; Song, Y.; Tian, C.; Rong, W.; Shi, Z.; Dang, Z.; Lin, Z. Effective Extraction of Cr(VI) from Hazardous Gypsum Sludge via Controlling the Phase Transformation and Chromium Species. Environ. Sci. Technol. 2018, 52, 13336–13342. [Google Scholar] [CrossRef]
- Nadeem, M.S.; Baoji, M.; Alam, M.M.; Riaz, N.N.; Al-Sehemi, A.G.; Munawar, T.; Mukhtar, F.; Rabbani, A.W.; Naz, A.; Al-Tahan, M.A.; et al. Sr-Doped ZnO Thin Film on a Silicon Substrate (100) Grown by Sol-Gel Method: Structural and Optical Study. Opt. Mater. 2024, 157, 116106. [Google Scholar] [CrossRef]
- Chang, F.; Li, J.; Kou, Y.; Bao, W.; Shi, Z.; Zhu, G.; Kong, Y. The Intense Charge Migration and Efficient Photocatalytic NO Removal of the S-Scheme Heterojunction Composites Bi7O9I3-BiOBr. Sep. Purif. Technol. 2025, 353, 128402. [Google Scholar] [CrossRef]
- Chang, F.; Bao, W.; Li, K.; Bai, W.; Shi, Z.; Liu, D.; Kong, Y. Augmented Photocatalytic NO Removal by the S-Scheme Bi7O9I3/Bi2S3 Heterojunctions with Surface Oxygen Vacancies: Experimental Analyses and Theoretical Calculations. J. Environ. Manag. 2024, 370, 122390. [Google Scholar] [CrossRef]
- Chang, F.; Zhao, S.; Lei, Y.; Wang, X.; Dong, F.; Zhu, G.; Kong, Y. Jointly Augmented Photocatalytic NO Removal by S-Scheme Bi12SiO20/Ag2MoO4 Heterojunctions with Surface Oxygen Vacancies. J. Colloid Interface Sci. 2023, 649, 713–723. [Google Scholar] [CrossRef]
- Chang, F.; Yang, C.; Wang, X.; Zhao, S.; Wang, J.; Yang, W.; Dong, F.; Zhu, G.; Kong, Y. Mechanical Ball-Milling Preparation and Superior Photocatalytic NO Elimination of Z-Scheme Bi12SiO20-Based Heterojunctions with Surface Oxygen Vacancies. J. Clean. Prod. 2022, 380, 135167. [Google Scholar] [CrossRef]
- Apriandanu, D.O.B.; Nakayama, S.; Shibata, K.; Amano, F. Ti-Doped Fe2O3 Photoanodes on Three-Dimensional Titanium Microfiber Felt Substrate for Photoelectrochemical Oxygen Evolution Reaction. Electrochim. Acta 2023, 456, 142434. [Google Scholar] [CrossRef]
- Apriandanu, D.O.B.; Surya, R.M.; Beppu, K.; Amano, F. Anion-Exchange Membrane–Photoelectrochemical Water Splitting Using Porous Hematite Photoanodes. ACS Appl. Energy Mater. 2023, 6, 10736–10741. [Google Scholar] [CrossRef]
- Oliveira, T.M.; Santos, C.; Lima, A.F.; Lalic, M.V. Antisite Defect as Rule for Photorefractive, Photochromic and Photocatalytic Properties of Bi12MO20 (M = Ge, Si, Ti) Sillenite Crystals. J. Alloys Compd. 2017, 720, 187–195. [Google Scholar] [CrossRef]
- Wang, W.; Wen, C.; Guan, J.; Man, H.; Bian, J. Insight on Photocatalytic Oxidation of High Concentration NO over BiOCl/Bi2WO6 under Visible Light. J. Ind. Eng. Chem. 2021, 103, 305–313. [Google Scholar] [CrossRef]
- Chang, F.; Wei, Z.; Zhao, Z.; Qi, Y.; Liu, D. 2D-2D Heterostructured Composites Bi4O5Br2-SnS2 with Boosted Photocatalytic NOx Abatement. J. Ind. Eng. Chem. 2023, 117, 265–272. [Google Scholar] [CrossRef]
- Chen, Q.; Long, H.; Chen, M.; Rao, Y.; Li, X.; Huang, Y. In Situ Construction of Biocompatible Z-Scheme α-Bi2O3/CuBi2O4 Heterojunction for NO Removal under Visible Light. Appl. Catal. B Environ. 2020, 272, 119008. [Google Scholar] [CrossRef]
- Chang, F.; Wang, X.; Yang, C.; Li, S.; Wang, J.; Yang, W.; Dong, F.; Hu, X.; Liu, D.; Kong, Y. Enhanced Photocatalytic NO Removal with the Superior Selectivity for NO2−/NO3− Species of Bi12GeO20-Based Composites via a Ball-Milling Treatment: Synergetic Effect of Surface Oxygen Vacancies and n-p Heterojunctions. Compos. Part B 2022, 231, 109600. [Google Scholar] [CrossRef]
- Huo, W.; Xu, W.; Cao, Z.; Guo, Z.; Liu, X.; Ge, G.; Li, N.; Lan, T.; Yao, H.; Zhang, Y.; et al. Carbonate Doped Bi2MoO6 Hierarchical Nanostructure with Enhanced Transformation of Active Radicals for Efficient Photocatalytic Removal of NO. J. Colloid Interface Sci. 2019, 557, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Zha, R.; Niu, Y.; Liu, C.; He, L.; Zhang, M. Oxygen Vacancy Configuration in Confined BiVO4-Bi2S3 Heterostructures Promotes Photocatalytic Oxidation of NO. J. Environ. Chem. Eng. 2021, 9, 106586. [Google Scholar] [CrossRef]
- Liu, H.; Pan, L.; Nie, J.; Mei, H.; Zhu, G.; Jin, Z.; Cheng, L.; Zhang, L. Bi12TiO20-TiO2 S-Scheme Heterojunction for Improved Photocatalytic NO Removal: Experimental and DFT Insights. Sep. Purif. Technol. 2023, 314, 123575. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Y.; Ho, W.; Cao, J.; Shen, Z.; Lee, S. Fabrication of Bi2O2CO3/g-C3N4 Heterojunctions for Efficiently Photocatalytic NO in Air Removal: In-Situ Self-Sacrificial Synthesis, Characterizations and Mechanistic Study. Appl. Catal. B Environ. 2016, 199, 123–133. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, F.; Bao, W.; Li, J.; Zhao, Z.; Liu, D. Photocatalytic NO Removal by Ternary Composites Bi12GeO20/BiOCl/W18O49 Using a Waste Reutilization Strategy. Catalysts 2025, 15, 73. https://doi.org/10.3390/catal15010073
Chang F, Bao W, Li J, Zhao Z, Liu D. Photocatalytic NO Removal by Ternary Composites Bi12GeO20/BiOCl/W18O49 Using a Waste Reutilization Strategy. Catalysts. 2025; 15(1):73. https://doi.org/10.3390/catal15010073
Chicago/Turabian StyleChang, Fei, Wenlong Bao, Jiayi Li, Zhongyuan Zhao, and Dengguo Liu. 2025. "Photocatalytic NO Removal by Ternary Composites Bi12GeO20/BiOCl/W18O49 Using a Waste Reutilization Strategy" Catalysts 15, no. 1: 73. https://doi.org/10.3390/catal15010073
APA StyleChang, F., Bao, W., Li, J., Zhao, Z., & Liu, D. (2025). Photocatalytic NO Removal by Ternary Composites Bi12GeO20/BiOCl/W18O49 Using a Waste Reutilization Strategy. Catalysts, 15(1), 73. https://doi.org/10.3390/catal15010073