Glu-Co-Assisted Iron-Based Metal–Organic Framework-Derived FeCo/N Co-Doped Carbon Material as Efficient Bifunctional Oxygen Electrocatalysts for Zn–Air Batteries
Abstract
1. Introduction
2. Results
2.1. Structural Characterizations and Composition Analysis
2.2. Electrocatalytic Properties
2.3. Aqueous Zn–Air Battery Performance
3. Experimental
3.1. Materials
3.2. Preparation of NH2-MIL-101(Fe)
3.3. Preparation of NH2-MIL-101(Fe)@glu-Co/KB
3.4. Synthesis of FeCo-CNTs/KB
3.5. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Gong, M.; Liang, Y.; Feng, J.; Kim, J.-E.; Wang, H.; Hong, G.; Zhang, B.; Dai, H. Advanced Zinc-Air Batteries Based on High-Performance Hybrid Electrocatalysts. Nat. Commun. 2013, 4, 1805. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dai, H. Recent Advances in Zinc–Air Batteries. Chem. Soc. Rev. 2014, 43, 5257–5275. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Chen, Y.-N.; Cui, H.; Zhou, Z. Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries. Chin. J. Catal. 2019, 40, 1298–1310. [Google Scholar] [CrossRef]
- Shao, M.; Chang, Q.; Dodelet, J.-P.; Chenitz, R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev. 2016, 116, 3594–3657. [Google Scholar] [CrossRef] [PubMed]
- Reier, T.; Nong, H.N.; Teschner, D.; Schlögl, R.; Strasser, P. Electrocatalytic Oxygen Evolution Reaction in Acidic Environments—Reaction Mechanisms and Catalysts. Adv. Energy Mater. 2017, 7, 1601275. [Google Scholar] [CrossRef]
- Chen, Y.; Yoo, S.; Zhang, W.; Kim, J.H.; Zhou, Y.; Pei, K.; Kane, N.; Zhao, B.; Murphy, R.; Choi, Y.; et al. Effective Promotion of Oxygen Reduction Reaction by in Situ Formation of Nanostructured Catalyst. ACS Catal. 2019, 9, 7137–7142. [Google Scholar] [CrossRef]
- Materials Design and Discovery Group; Chae, H.K.; Siberio-Pérez, D.Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A.J.; O’Keeffe, M.; Yaghi, O.M. A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals. Nature 2004, 427, 523–527. [Google Scholar] [CrossRef]
- Gao, X.; Xu, T.; Jiang, Z.; Yu, H.; Wang, Y.; He, Y. Rational Construction and Remarkable Gas Adsorption Properties of a HKUST-1-like Tbo-Type MOF Based on a Tetraisophthalate Linker. Dalton Trans. 2019, 48, 16793–16799. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zeng, X.; Wang, W.; Cao, D. Recent Progress in MOF-Derived, Heteroatom-Doped Porous Carbons as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. Adv. Funct. Mater. 2018, 28, 1704537. [Google Scholar] [CrossRef]
- Sun, M.; Liu, H.; Qu, J.; Li, J. Earth-Rich Transition Metal Phosphide for Energy Conversion and Storage. Adv. Energy Mater. 2016, 6, 1600087. [Google Scholar] [CrossRef]
- Wu, G.; Santandreu, A.; Kellogg, W.; Gupta, S.; Ogoke, O.; Zhang, H.; Wang, H.-L.; Dai, L. Carbon Nanocomposite Catalysts for Oxygen Reduction and Evolution Reactions: From Nitrogen Doping to Transition-Metal Addition. Nano Energy 2016, 29, 83–110. [Google Scholar] [CrossRef]
- Muthurasu, A.; Sampath, P.; Ko, T.H.; Lohani, P.C.; Pathak, I.; Acharya, D.; Chhetri, K.; Kim, D.H.; Kim, H.Y. Partial Selenium Surface Modulation of Metal Organic Framework Assisted Cobalt Sulfide Hollow Spheres for High Performance Bifunctional Oxygen Electrocatalysis and Rechargeable Zinc-Air Batteries. Appl. Catal. B Environ. 2023, 330, 122523. [Google Scholar] [CrossRef]
- Muthurasu, A.; Chae, S.-H.; Hoon Ko, T.; Chandra Lohani, P.; Yong Kim, H. Highly Ordered Nanoarrays Catalysts Embedded in Carbon Nanotubes as Highly Efficient and Robust Air Electrode for Flexible Solid-State Rechargeable Zinc-Air Batteries. J. Colloid Interface Sci. 2022, 616, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Muthurasu, A.; Dahal, B.; Mukhiya, T.; Chhetri, K.; Kim, H.Y. Fabrication of Nonmetal-Modulated Dual Metal–Organic Platform for Overall Water Splitting and Rechargeable Zinc–Air Batteries. ACS Appl. Mater. Interfaces 2020, 12, 41704–41717. [Google Scholar] [CrossRef]
- Muthurasu, A.; Tiwari, A.P.; Chhetri, K.; Dahal, B.; Kim, H.Y. Construction of Iron Doped Cobalt- Vanadate- Cobalt Oxide with Metal-Organic Framework Oriented Nanoflakes for Portable Rechargeable Zinc-Air Batteries Powered Total Water Splitting. Nano Energy 2021, 88, 106238. [Google Scholar] [CrossRef]
- Du, Z.; Yu, P.; Wang, L.; Tian, C.; Liu, X.; Zhang, G.; Fu, H. Cubic Imidazolate Frameworks-Derived CoFe Alloy Nanoparticles-Embedded N-Doped Graphitic Carbon for Discharging Reaction of Zn-Air Battery. Sci. China Mater. 2020, 63, 327–338. [Google Scholar] [CrossRef]
- Li, J.-S.; Li, S.-L.; Tang, Y.-J.; Han, M.; Dai, Z.-H.; Bao, J.-C.; Lan, Y.-Q. Nitrogen-Doped Fe/Fe3C@graphitic Layer/Carbon Nanotube Hybrids Derived from MOFs: Efficient Bifunctional Electrocatalysts for ORR and OER. Chem. Commun. 2015, 51, 2710–2713. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Wang, X.; Li, L.; Qin, J.; Cao, M. Carbon Hybrid with 3D Nano-Forest Architecture in-Situ Catalytically Constructed by CoFe Alloy as Advanced Multifunctional Electrocatalysts for Zn-Air Batteries-Driven Water Splitting. J. Energy Chem. 2021, 53, 422–432. [Google Scholar] [CrossRef]
- Zheng, X.; Cao, X.; Zeng, K.; Yan, J.; Sun, Z.; Rümmeli, M.H.; Yang, R. A Self-Jet Vapor-Phase Growth of 3D FeNi@NCNT Clusters as Efficient Oxygen Electrocatalysts for Zinc-Air Batteries. Small 2021, 17, 2006183. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.-H.; Jeffery, A.A.; Min, J.; Jung, N.; Yoo, S.J. Emerging Carbon Shell-Encapsulated Metal Nanocatalysts for Fuel Cells and Water Electrolysis. Nanoscale 2021, 13, 15116–15141. [Google Scholar] [CrossRef]
- Cai, P.; Hong, Y.; Ci, S.; Wen, Z. In Situ Integration of CoFe Alloy Nanoparticles with Nitrogen-Doped Carbon Nanotubes as Advanced Bifunctional Cathode Catalysts for Zn–Air Batteries. Nanoscale 2016, 8, 20048–20055. [Google Scholar] [CrossRef]
- Khalid, M.; Bhardwaj, P.A.; Honorato, A.M.B.; Varela, H. Metallic Single-Atoms Confined in Carbon Nanomaterials for the Electrocatalysis of Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. Catal. Sci. Technol. 2020, 10, 6420–6448. [Google Scholar] [CrossRef]
- Pei, Y.; Qi, Z.; Li, X.; Maligal-Ganesh, R.V.; Goh, T.W.; Xiao, C.; Wang, T.; Huang, W. Morphology Inherence from Hollow MOFs to Hollow Carbon Polyhedrons in Preparing Carbon-Based Electrocatalysts. J. Mater. Chem. A 2017, 5, 6186–6192. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.; Hu, W.; Huang, Y. A Metal-Organic Framework-Derived Fe–N–C Electrocatalyst with Highly Dispersed Fe–Nx towards Oxygen Reduction Reaction. Int. J. Hydrog. Energy 2019, 44, 27379–27389. [Google Scholar] [CrossRef]
- Niu, H.-J.; Chen, S.-S.; Feng, J.-J.; Zhang, L.; Wang, A.-J. Assembled Hollow Spheres with CoFe Alloyed Nanocrystals Encapsulated in N, P-Doped Carbon Nanovesicles: An Ultra-Stable Bifunctional Oxygen Catalyst for Rechargeable Zn-Air Battery. J. Power Sources 2020, 475, 228594. [Google Scholar] [CrossRef]
- Gallardo-Donaire, J.; Hermsen, M.; Wysocki, J.; Ernst, M.; Rominger, F.; Trapp, O.; Hashmi, A.S.K.; Schäfer, A.; Comba, P.; Schaub, T. Direct Asymmetric Ruthenium-Catalyzed Reductive Amination of Alkyl–Aryl Ketones with Ammonia and Hydrogen. J. Am. Chem. Soc. 2018, 140, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, H.; Chen, J.; Ma, F.; Zhen, L.; Wen, Z.; Xu, C. Transition Metal (Co, Ni, Fe, Cu) Single-Atom Catalysts Anchored on 3D Nitrogen-Doped Porous Carbon Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Zn–Air Battery. Small 2022, 18, 2202476. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Chen, L.; Liu, X.; Jia, J.; Guo, S. A New Method for Developing Defect-Rich Graphene Nanoribbons/Onion-like carbon@Co Nanoparticles Hybrid Materials as an Excellent Catalyst for Oxygen Reactions. Nanoscale 2017, 9, 1738–1744. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, W.; Chen, Y.; Wei, B.; Chen, L.; Peng, L.; Xiang, R.; Li, J.; Wang, Z.; Wei, Z. Carbon-Based Catalysts by Structural Manipulation with Iron for Oxygen Reduction Reaction. J. Mater. Chem. A 2018, 6, 8405–8412. [Google Scholar] [CrossRef]
- Mahmood, A.; Tabassum, H.; Zhao, R.; Guo, W.; Aftab, W.; Liang, Z.; Sun, Z.; Zou, R. Fe2N/S/N Codecorated Hierarchical Porous Carbon Nanosheets for Trifunctional Electrocatalysis. Small 2018, 14, 1803500. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Kou, Z.; Mu, S.; Liu, J.; He, D.; Amiinu, I.S.; Meng, W.; Zhou, K.; Luo, Z.; Chaemchuen, S.; et al. 2D Dual-Metal Zeolitic-Imidazolate-Framework-(ZIF)-Derived Bifunctional Air Electrodes with Ultrahigh Electrochemical Properties for Rechargeable Zinc-Air Batteries. Adv. Funct. Mater. 2018, 28, 1705048. [Google Scholar] [CrossRef]
- Amiinu, I.S.; Liu, X.; Pu, Z.; Li, W.; Li, Q.; Zhang, J.; Tang, H.; Zhang, H.; Mu, S. From 3D ZIF Nanocrystals to Co-Nx/C Nanorod Array Electrocatalysts for ORR, OER, and Zn-Air Batteries. Adv. Funct. Mater. 2018, 28, 1704638. [Google Scholar] [CrossRef]
- Amiinu, I.S.; Pu, Z.; Liu, X.; Owusu, K.A.; Monestel, H.G.R.; Boakye, F.O.; Zhang, H.; Mu, S. Multifunctional Mo–N/C@MoS2 Electrocatalysts for HER, OER, ORR, and Zn–Air Batteries. Adv. Funct. Mater. 2017, 27, 1702300. [Google Scholar] [CrossRef]
- Su, C.; Cheng, H.; Li, W.; Liu, Z.; Li, N.; Hou, Z.; Bai, F.; Zhang, H.; Ma, T. Atomic Modulation of FeCo–Nitrogen–Carbon Bifunctional Oxygen Electrodes for Rechargeable and Flexible All-Solid-State Zinc–Air Battery. Adv. Energy Mater. 2017, 7, 1602420. [Google Scholar] [CrossRef]
- Jiang, M.; Yang, J.; Ju, J.; Zhang, W.; He, L.; Zhang, J.; Fu, C.; Sun, B. Space-Confined Synthesis of CoNi Nanoalloy in N-Doped Porous Carbon Frameworks as Efficient Oxygen Reduction Catalyst for Neutral and Alkaline Aluminum-Air Batteries. Energy Storage Mater. 2020, 27, 96–108. [Google Scholar] [CrossRef]
- Chen, X.; Chen, D.; Li, G.; Sha, P.; Yu, J.; Yu, L.; Dong, L. FeNi Incorporated N Doped Carbon Nanotubes from Glucosamine Hydrochloride as Highly Efficient Bifunctional Catalyst for Long Term Rechargeable Zinc-Air Batteries. Electrochim. Acta 2022, 428, 140938. [Google Scholar] [CrossRef]
- Xu, Q.; Jiang, H.; Li, Y.; Liang, D.; Hu, Y.; Li, C. In-Situ Enriching Active Sites on Co-Doped Fe-Co4N@N-C Nanosheet Array as Air Cathode for Flexible Rechargeable Zn-Air Batteries. Appl. Catal. B Environ. 2019, 256, 117893. [Google Scholar] [CrossRef]
- Duan, X.; Ren, S.; Pan, N.; Zhang, M.; Zheng, H. MOF-Derived Fe, Co@N–C Bifunctional Oxygen Electrocatalysts for Zn–Air Batteries. J. Mater. Chem. A 2020, 8, 9355–9363. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Chen, Y.-P.; Cao, Y.; Zhang, L.; Feng, J.-J.; Wang, A.-J. Aminouracil-Assisted Synthesis of CoFe Decorated Bougainvillea-like N-Doped Carbon Nanoflowers for Boosting Zn–Air Battery and Water Electrolysis. J. Power Sources 2022, 521, 230926. [Google Scholar] [CrossRef]
- Sun, R.-M.; Zhang, L.; Feng, J.-J.; Fang, K.-M.; Wang, A.-J. In Situ Produced Co9S8 Nanoclusters/Co/Mn-S, N Multi-Doped 3D Porous Carbon Derived from Eriochrome Black T as an Effective Bifunctional Oxygen Electrocatalyst for Rechargeable Zn-Air Batteries. J. Colloid Interface Sci. 2022, 608, 2100–2110. [Google Scholar] [CrossRef]
- Meng, H.-L.; Lin, S.-Y.; Feng, J.-J.; Zhang, L.; Wang, A.-J. Coordination Regulated Pyrolysis Synthesis of Ultrafine FeNi/(FeNi)9S8 Nanoclusters/Nitrogen, Sulfur-Codoped Graphitic Carbon Nanosheets as Efficient Bifunctional Oxygen Electrocatalysts. J. Colloid Interface Sci. 2022, 610, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Park, D.-J.; Yang, W.-G.; Ryu, K.-S. Comparison of Electrochemical Performance for Zinc Anode via Various Electrolytes and Conducting Agents in Zn-Air Secondary Batteries. Ionics 2017, 23, 1801–1809. [Google Scholar] [CrossRef]
- Li, J.; Meng, Z.; Brett, D.J.L.; Shearing, P.R.; Skipper, N.T.; Parkin, I.P.; Gadipelli, S. High-Performance Zinc–Air Batteries with Scalable Metal–Organic Frameworks and Platinum Carbon Black Bifunctional Catalysts. ACS Appl. Mater. Interfaces 2020, 12, 42696–42703. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhu, J.; Chen, C.; Xie, J.; Wang, M. Bi2S3/Ketjen Black as a Highly Efficient Bifunctional Catalyst for Long-Cycle Lithium-Oxygen Batteries. ChemElectroChem 2019, 6, 3885–3891. [Google Scholar] [CrossRef]
- Xun, S.; Xu, Y.; He, J.; Jiang, D.; Yang, R.; Li, D.; Chen, M. MOF-Derived Cobalt Oxides Nanoparticles Anchored on CoMoO4 as a Highly Active Electrocatalyst for Oxygen Evolution Reaction. J. Alloys Compd. 2019, 806, 1097–1104. [Google Scholar] [CrossRef]
- Zhang, S.L.; Guan, B.Y.; Lou, X.W. (David) Co–Fe Alloy/N-Doped Carbon Hollow Spheres Derived from Dual Metal–Organic Frameworks for Enhanced Electrocatalytic Oxygen Reduction. Small 2019, 15, 1805324. [Google Scholar] [CrossRef]
- Gao, S.; Fan, B.; Feng, R.; Ye, C.; Wei, X.; Liu, J.; Bu, X. N-Doped-Carbon-Coated Fe3O4 from Metal-Organic Framework as Efficient Electrocatalyst for ORR. Nano Energy 2017, 40, 462–470. [Google Scholar] [CrossRef]
- Lu, X.; Yang, P.; Wan, Y.; Zhang, H.; Xu, H.; Xiao, L.; Li, R.; Li, Y.; Zhang, J.; An, M. Active Site Engineering toward Atomically Dispersed M−N−C Catalysts for Oxygen Reduction Reaction. Coord. Chem. Rev. 2023, 495, 215400. [Google Scholar] [CrossRef]
- Poudel, M.B.; Vijayapradeep, S.; Sekar, K.; Kim, J.S.; Dong, J.Y. Pyridinic-N exclusively enriched CNT encapsulated NiFe interfacial alloy nanoparticles on knitted carbon fiber cloth for bifunctional oxygen catalysts and biaxially flexible zinc-air batteries. J. Mater. Chem. A 2024. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Zhang, M.; Li, S.; Liu, R.; Li, Z. Metal-Organic Frameworks-Derived Hollow-Structured Iron-Cobalt Bimetallic Phosphide Electrocatalysts for Efficient Oxygen Evolution Reaction. J. Alloys Compd. 2020, 821, 153463. [Google Scholar] [CrossRef]
- Zuo, X.; Chang, K.; Zhao, J.; Xie, Z.; Tang, H.; Li, B.; Chang, Z. Bubble-Template-Assisted Synthesis of Hollow Fullerene-like MoS2 Nanocages as a Lithium Ion Battery Anode Material. J. Mater. Chem. A 2016, 4, 51–58. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, X.; Lv, S.; Li, Y.; Ren, J.; Huang, Y. Hollow NH2-MIL-101@TA Derived Electrocatalyst for Enhanced Oxygen Reduction Reaction and Oxygen Evolution Reaction. Int. J. Hydrog. Energy 2021, 46, 38692–38700. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Y.; Zhang, L.; Wu, H.; Jin, Y.; Li, Y.; Shi, Y.; Zhu, T.; Mao, H.; Liu, J.; et al. Simultaneously Realizing Rapid Electron Transfer and Mass Transport in Jellyfish-Like Mott–Schottky Nanoreactors for Oxygen Reduction Reaction. Adv. Funct. Mater. 2020, 30, 1910482. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, X.; Xie, Y.; Sun, F.; Liang, Z.; Wang, L.; Fu, H. N-Doped Carbon Coating Enhances the Bifunctional Oxygen Reaction Activity of CoFe Nanoparticles for a Highly Stable Zn–Air Battery. J. Mater. Chem. A 2020, 8, 21189–21198. [Google Scholar] [CrossRef]
- Huang, L.-B.; Zhao, L.; Zhang, Y.; Luo, H.; Zhang, X.; Zhang, J.; Pan, H.; Hu, J.-S. Engineering Carbon-Shells of M@NC Bifunctional Oxygen Electrocatalyst towards Stable Aqueous Rechargeable Zn-Air Batteries. Chem. Eng. J. 2021, 418, 129409. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, S.; Huang, S.; Hu, B.; Wang, M.; Zhang, Z.; He, L.; Du, M. Photocatalytic Degradation of Oxytetracycline under Visible Light by Nanohybrids of CoFe Alloy Nanoparticles and Nitrogen-/Sulfur-Codoped Mesoporous Carbon. Chem. Eng. J. 2021, 420, 130516. [Google Scholar] [CrossRef]
- Wang, D.; Xu, H.; Yang, P.; Lu, X.; Ma, J.; Li, R.; Xiao, L.; Zhang, J.; An, M. Fe–N4 and Co–N4 Dual Sites for Boosting Oxygen Electroreduction in Zn–Air Batteries. J. Mater. Chem. A 2021, 9, 13678–13687. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Pan, G.; Miao, L.; Chen, S.; Song, Y. Polyaniline-Carbon Nanotubes@Zeolite Imidazolate Framework 67-Carbon Cloth Hierarchical Nanostructures for Supercapacitor Electrode. Electrochim. Acta 2017, 240, 16–23. [Google Scholar] [CrossRef]
- Taha, A.A.; Huang, L.; Ramakrishna, S.; Liu, Y. MOF [NH2-MIL-101(Fe)] as a Powerful and Reusable Fenton-like Catalyst. J. Water Process Eng. 2020, 33, 101004. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sha, P.; Yong, X.; Chen, D.; Chen, X.; Yan, F.; Pang, B.; Dong, H.; Yu, J.; Yu, L.; Dong, L. Glu-Co-Assisted Iron-Based Metal–Organic Framework-Derived FeCo/N Co-Doped Carbon Material as Efficient Bifunctional Oxygen Electrocatalysts for Zn–Air Batteries. Catalysts 2024, 14, 205. https://doi.org/10.3390/catal14030205
Sha P, Yong X, Chen D, Chen X, Yan F, Pang B, Dong H, Yu J, Yu L, Dong L. Glu-Co-Assisted Iron-Based Metal–Organic Framework-Derived FeCo/N Co-Doped Carbon Material as Efficient Bifunctional Oxygen Electrocatalysts for Zn–Air Batteries. Catalysts. 2024; 14(3):205. https://doi.org/10.3390/catal14030205
Chicago/Turabian StyleSha, Pengfei, Xiao Yong, Di Chen, Xing Chen, Fengying Yan, Beili Pang, Hongzhou Dong, Jianhua Yu, Liyan Yu, and Lifeng Dong. 2024. "Glu-Co-Assisted Iron-Based Metal–Organic Framework-Derived FeCo/N Co-Doped Carbon Material as Efficient Bifunctional Oxygen Electrocatalysts for Zn–Air Batteries" Catalysts 14, no. 3: 205. https://doi.org/10.3390/catal14030205
APA StyleSha, P., Yong, X., Chen, D., Chen, X., Yan, F., Pang, B., Dong, H., Yu, J., Yu, L., & Dong, L. (2024). Glu-Co-Assisted Iron-Based Metal–Organic Framework-Derived FeCo/N Co-Doped Carbon Material as Efficient Bifunctional Oxygen Electrocatalysts for Zn–Air Batteries. Catalysts, 14(3), 205. https://doi.org/10.3390/catal14030205