Evaluation of Heterogeneous Catalytic Ozonation Process for the Removal of Micropollutants from Water/Wastewater: Application of a Novel Pilot-Scale Continuous Flow System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Catalysts’ Concentrations on the Removal of Micropollutants
2.2. Effect of Solution pH on the Removal of Micropollutants
2.3. Effect of Solution Temperature on the Removal of Micropollutants
2.4. Effect of Contact/Treatment Time on the Removal of Micropollutants
2.5. Effect of Calcination on a Material’s Catalytic Ability regarding the Ozonation of Micropollutants
2.6. Comparison of Catalytic with Single Ozonation Process
3. Materials and Methods
3.1. Experimental Set-Up
3.2. Materials and Reagents
3.2.1. Ozone
3.2.2. Catalysts
3.2.3. Micropollutants
3.3. Analytical Methods
3.3.1. Ozone Determination
3.3.2. Analytical Determination of Micropollutants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arman, N.Z.; Salmiati, S.; Aris, A.; Salim, M.R.; Nazifa, T.H.; Muhamad, M.S.; Marpongahtun, M. A Review on Emerging Pollutants in the Water Environment: Existences, Health Effects and Treatment Processes. Water 2021, 13, 3258. [Google Scholar] [CrossRef]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef]
- Gogoi, A.; Mazumder, P.; Tyagi, V.K.; Tushara Chaminda, G.G.; An, A.K.; Kumar, M. Occurrence and fate of emerging contaminants in water environment: A review. Groundw. Sustain. Dev. 2018, 6, 169–180. [Google Scholar] [CrossRef]
- Mahmood, T.; Momin, S.; Ali, R.; Naeem, A.; Khan, A. Technologies for Removal of Emerging Contaminants from Wastewater. In Wastewater Treatment; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Liu, G.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.; Stock, F.; Carmona, E.; Teixeira, M.R.; Picos-Corrales, L.A.; et al. Worldwide cases of water pollution by emerging contaminants: A review. Environ. Chem. Lett. 2022, 20, 2311–2338. [Google Scholar] [CrossRef]
- Nannou, C.; Kaprara, E.; Psaltou, S.; Salapasidou, M.; Palasantza, P.-A.; Diamantopoulos, P.; Lambropoulou, D.A.; Mitrakas, M.; Zouboulis, A. Monitoring of a Broad Set of Pharmaceuticals in Wastewaters by High-Resolution Mass Spectrometry and Evaluation of Heterogenous Catalytic Ozonation for Their Removal in a Pre-Industrial Level Unit. Analytica 2022, 3, 195–212. [Google Scholar] [CrossRef]
- Karpińska, J.; Kotowska, U. New Aspects of Occurrence and Removal of Emerging Pollutants. Water 2021, 13, 2418. [Google Scholar] [CrossRef]
- Stuart, M.; Lapworth, D.; Crane, E.; Hart, A. Review of risk from potential emerging contaminants in UK groundwater. Sci. Total Environ. 2012, 416, 1–21. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Fourmentin, M.; Ribeiro, A.R.L.; Noutsopoulos, C.; Mapelli, F.; Fenyvesi, É.; Vieira, M.G.A.; Picos-Corrales, L.A.; Moreno-Piraján, J.C.; et al. Removal of emerging contaminants from wastewater using advanced treatments. A review. Environ. Chem. Lett. 2022, 20, 1333–1375. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S.; Show, P.-L. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. J. Hazard. Mater. 2021, 409, 124413. [Google Scholar] [CrossRef]
- Varsha, M.; Kumar, P.S.; Rathi, B.S. A review on recent trends in the removal of emerging contaminants from aquatic environment using low-cost adsorbents. Chemosphere 2022, 287, 132270. [Google Scholar] [CrossRef]
- Kumar, R.; Qureshi, M.; Vishwakarma, D.K.; Al-Ansari, N.; Kuriqi, A.; Elbeltagi, A.; Saraswat, A. A review on emerging water contaminants and the application of sustainable removal technologies. Case Stud. Chem. Environ. Eng. 2022, 6, 100219. [Google Scholar] [CrossRef]
- Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Sci. Total Environ. 2021, 753, 141990. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 2019, 17, 195–213. [Google Scholar] [CrossRef]
- Ferreira, R.C.; de Lima, H.H.C.; Cândido, A.A.; Junior, O.M.C.; Arroyo, P.A.; Gauze, G.F.; Carvalho, K.Q.; Barros, M.A.S.D. Adsorption of Paracetamol Using Activated Carbon of Dende and Babassu Coconut Mesocarp. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2015, 9, 717–722. [Google Scholar]
- Couto, O.M.; Matos, I.; da Fonseca, I.M.; Arroyo, P.A.; da Silva, E.A.; de Barros, M.A.S.D. Effect of Solution pH and Influence of Water Hardness on Caffeine Adsorption onto Activated Carbons. Can. J. Chem. Eng. 2015, 93, 68–77. [Google Scholar] [CrossRef]
- Dhangar, K.; Kumar, M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: A review. Sci. Total Environ. 2020, 738, 140320. [Google Scholar] [CrossRef]
- Lopera, A.E.-C.; Ruiz, S.G.; Alonso, J.M.Q. Removal of emerging contaminants from wastewater using reverse osmosis for its subsequent reuse: Pilot plant. J. Water Process. 2019, 29, 100800. [Google Scholar] [CrossRef]
- Racar, M.; Dolar, D.; Karadakić, K.; Čavarović, N.; Glumac, N.; Ašperger, D.; Košutić, K. Challenges of Municipal Wastewater Reclamation for Irrigation by MBR and NF/RO: Physico-Chemical and Microbiological Parameters, and Emerging Contaminants. Sci. Total Environ. 2020, 722, 137959. [Google Scholar] [CrossRef]
- Besha, A.T.; Gebreyohannes, A.Y.; Tufa, R.A.; Bekele, D.N.; Curcio, E.; Giorno, L. Removal of emerging micropollutants by activated sludge process and membrane bioreactors and the effects of micropollutants on membrane fouling: A review. J. Environ. Chem. Eng. 2017, 5, 2395–2414. [Google Scholar] [CrossRef]
- Kaprara, E.; Koutsiantzi, C.; Psaltou, S.; Zouboulis, A.; Mitrakas, M. Heterogeneous Catalytic Ozonation of Micropollutants in a Pilot Scale Continuous Flow System. Environ. Sci. Proc. 2020, 2, 24. [Google Scholar] [CrossRef]
- Radjenović, J.; Petrović, M.; Barceló, D. Fate and Distribution of Pharmaceuticals in Wastewater and Sewage Sludge of the Conventional Activated Sludge (CAS) and Advanced Membrane Bioreactor (MBR) Treatment. Water Res. 2009, 43, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Kakade, A.; Yu, Z.; Khan, A.; Liu, P.; Li, X. Anaerobic membrane bioreactors for treatment of emerging contaminants: A review. J. Environ. Manag. 2020, 270, 110913. [Google Scholar] [CrossRef]
- Kovalova, L.; Siegrist, H.; Singer, H.; Wittmer, A.; McArdell, C.S. Hospital Wastewater Treatment by Membrane Bioreactor: Performance and Efficiency for Organic Micropollutant Elimination. Environ. Sci. Technol. 2012, 46, 1536–1545. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H. Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. Sci. Total Environ. 2020, 704, 135249. [Google Scholar] [CrossRef]
- Psaltou, S.; Kaprara, E.; Mitrakas, M.; Zouboulis, A. Comparative study on heterogeneous and homogeneous catalytic ozonation efficiency in micropollutants’ removal. Aqua Water Infrastruct. Ecosyst. Soc. 2021, 70, 1121–1134. [Google Scholar] [CrossRef]
- Nawrocki, J. Catalytic ozonation in water: Controversies and questions. Discussion paper. Appl. Catal. B 2013, 142–143, 465–471. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Wang, B.; Deng, S.; Huang, J.; Yu, G.; Wang, Y. Prediction of micropollutant abatement during homogeneous catalytic ozonation by a chemical kinetic model. Water Res. 2018, 142, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Psaltou, S.; Kaprara, E.; Mitrakas, M.; Zouboulis, A.I. Performance of Heterogeneous Catalytic Ozonation with Minerals in Degradation of p-Chlorobenzoic Acid (p-CBA) from Aqueous Solutions. Proceedings 2020, 48, 12. [Google Scholar] [CrossRef]
- Psaltou, S.; Kaprara, E.; Triantafyllidis, K.; Mitrakas, M.; Zouboulis, A. Heterogeneous catalytic ozonation: The significant contribution of PZC value and wettability of the catalysts. J. Environ. Chem. Eng. 2021, 9, 106173. [Google Scholar] [CrossRef]
- Psaltou, S.; Kaprara, E.; Mitrakas, M.; Zouboulis, A. Thermally Treated Zeolite as a Catalyst in Heterogeneous Catalytic Ozonation—Optimization of Experimental Conditions and Micropollutant Degradation. Environ. Sci. Proc. 2021, 7, 12. [Google Scholar] [CrossRef]
- Lan, B.; Huang, R.; Li, L.; Yan, H.; Liao, G.; Wang, X.; Zhang, Q. Catalytic ozonation of p-chlorobenzoic acid in aqueous solution using Fe-MCM-41 as catalyst. Chem. Eng. J. 2013, 219, 346–354. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Dong, W.; Ma, J.; Cao, J.; Li, T.; Li, J.; Gu, J.; Liu, P. Study on enhanced degradation of atrazine by ozonation in the presence of hydroxylamine. J. Hazard. Mater. 2016, 316, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Roshani, B.; McMaster, I.; Rezaei, E.; Soltan, J. Catalytic ozonation of benzotriazole over alumina supported transition metal oxide catalysts in water. Sep. Purif. Technol. 2014, 135, 158–164. [Google Scholar] [CrossRef]
- Rosal, R.; Rodríguez, A.; Gonzalo, M.S.; Calvo, E.G. Catalytic ozonation of naproxen and carbamazepine on titanium dioxide. Appl. Catal. B 2008, 84, 48–57. [Google Scholar] [CrossRef]
- Psaltou, S.; Kaprara, E.; Mitrakas, M.; Zouboulis, A. Calcite Mineral Catalyst Capable of Enhancing Micropollutant Degradation during the Ozonation Process at pH 7. Environ. Sci. Proc. 2020, 2, 26. [Google Scholar] [CrossRef]
- Psaltou, S.; Kaprara, E.; Tsaragklis, A.; Mitrakas, M.; Zouboulis, A. Investigation of the Removal of Several Micropollutants Presenting Different Ozone Reactivities from Natural Potable Water Matrix by the Application of Ozonation with the Use of SiO2 and Al2O3 as Catalysts. Separations 2022, 9, 173. [Google Scholar] [CrossRef]
- Czaplicka, M.; Barchanska, H.; Jaworek, K.; Kaczmarczyk, B. The interaction between atrazine and the mineral horizon of soil: A spectroscopic study. J. Soils Sediments 2018, 18, 827–834. [Google Scholar] [CrossRef]
- Casillas-Ituarte, N.N.; Allen, H.C. Water, chloroform, acetonitrile, and atrazine adsorption to the amorphous silica surface studied by vibrational sum frequency generation spectroscopy. Chem. Phys. Lett. 2009, 483, 84–89. [Google Scholar] [CrossRef]
- Clausen, L.; Fabricius, I.; Madsen, L. Adsorption of Pesticides onto Quartz, Calcite, Kaolinite, and α-Alumina. J. Environ. Qual. 2001, 30, 846–857. [Google Scholar] [CrossRef]
- Psaltou, S.; Sioumpoura, K.; Kaprara, E.; Mitrakas, M.; Zouboulis, A. Transition Metal Ions as Ozonation Catalysts: An Alternative Process of Heterogeneous Catalytic Ozonation. Catalysts 2021, 11, 1091. [Google Scholar] [CrossRef]
- Paraskevopoulos, D. Study of the Effect of Experimental Conditions on the Decomposition of p-Chlorobenzoic Acid (p-CBA) by the Application of Heterogeneous Catalytic Ozonation. Bachelor’s Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2020. [Google Scholar]
- Morozov, P.A.; Ershov, B.G. The influence of phosphates on the decomposition of ozone in water: Chain process inhibition. Russ. J. Phys. Chem. A 2010, 84, 1136–1140. [Google Scholar] [CrossRef]
- Psaltou, S.; Kaprara, E.; Kalaitzidou, K.; Mitrakas, M.; Zouboulis, A. The Effect of Thermal Treatment on the Physicochemical Properties of Minerals Applied to Heterogeneous Catalytic Ozonation. Sustainability 2020, 12, 10503. [Google Scholar] [CrossRef]
- Kaprara, E.; Kostoglou, M.; Koutsiantzi, C.; Psaltou, S.; Zouboulis, A.I.; Mitrakas, M. Enhancement of ozonation efficiency employing dead-end hollow fiber membranes. Environ. Sci. Water Res. Technol. 2020, 6, 2619–2627. [Google Scholar] [CrossRef]
- Tresintsi, S.; Simeonidis, K.; Vourlias, G.; Stavropoulos, G.; Mitrakas, M. Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: Study of Fe(II) oxidation–precipitation parameters. Water Res. 2012, 46, 5255–5267. [Google Scholar] [CrossRef] [PubMed]
- APHA/AWWA/WEF. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Baltimore, MD, USA, 2012; ISBN 978-0875532356. [Google Scholar]
Specification | Value |
---|---|
Fiber ID (mm) | 0.68 |
Fiber OD (mm) | 1.2 |
Fiber length (m) | 0.2 |
Number of fibers | 590 |
Effective contact area (m2) | 0.33 |
Material | Polytetrafluoroethylene |
Materials | Main Physicochemical Characteristics | ||
---|---|---|---|
PZC | SBET (m2/g) | Pore Volume (mL/g) | |
Zeolite | 6.8 | 21 | 0.164 |
Zeolite-T | 7.1 | 16.4 | 0.149 |
Alumina | 7 | 150 | 0.512 |
Goethite | 7.8 | 135 | 0.265 |
Micropollutant | MW | Log D at pH 8 | pKa | kO3 (M−1s−1) | k•OH (M−1s−1) |
---|---|---|---|---|---|
Atrazine | 215.7 | 2.20 | 3.2 | 6 | 2.4 × 109 |
Benzotriazole | 119.1 | 1.21 | 9.04 | 20 | 7.6 × 109 |
Carbamazepine | 236.3 | 2.77 | 16 | 3 × 105 | 8.8 × 109 |
p-CBA | 156.6 | −1.15 | 4.07 | 0.15 | 5 × 109 |
Micropollutant | 10 mM H3PO4, % v/v | ACN, % v/v |
---|---|---|
Atrazine | 5 | 50 |
Benzotriazole | 75 | 25 |
Carbamazepine | 60 | 40 |
p-CBA | 60 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaprara, E.; Belesakos, C.; Kollis, K.; Psaltou, S.; Zouboulis, A.; Mitrakas, M. Evaluation of Heterogeneous Catalytic Ozonation Process for the Removal of Micropollutants from Water/Wastewater: Application of a Novel Pilot-Scale Continuous Flow System. Catalysts 2023, 13, 899. https://doi.org/10.3390/catal13050899
Kaprara E, Belesakos C, Kollis K, Psaltou S, Zouboulis A, Mitrakas M. Evaluation of Heterogeneous Catalytic Ozonation Process for the Removal of Micropollutants from Water/Wastewater: Application of a Novel Pilot-Scale Continuous Flow System. Catalysts. 2023; 13(5):899. https://doi.org/10.3390/catal13050899
Chicago/Turabian StyleKaprara, Efthimia, Charalampos Belesakos, Konstantinos Kollis, Savvina Psaltou, Anastasios Zouboulis, and Manassis Mitrakas. 2023. "Evaluation of Heterogeneous Catalytic Ozonation Process for the Removal of Micropollutants from Water/Wastewater: Application of a Novel Pilot-Scale Continuous Flow System" Catalysts 13, no. 5: 899. https://doi.org/10.3390/catal13050899
APA StyleKaprara, E., Belesakos, C., Kollis, K., Psaltou, S., Zouboulis, A., & Mitrakas, M. (2023). Evaluation of Heterogeneous Catalytic Ozonation Process for the Removal of Micropollutants from Water/Wastewater: Application of a Novel Pilot-Scale Continuous Flow System. Catalysts, 13(5), 899. https://doi.org/10.3390/catal13050899