Hydroisomerization Catalysts for High-Quality Diesel Fuel Production
Abstract
:1. Introduction
2. Straight-Chain Alkane Hydroisomerization Process
2.1. The Principle of the Process and Its Technical Significance
Alkane | Chemical Formula | Boiling Point (°C) | Melting Point (°C) | Flash Point (°C) | Cetane Number |
---|---|---|---|---|---|
n-propane | C3H8 | −42.0 | −187.6 | −104.0 | −20.0 |
n-butane | C4H10 | 0.5 | −138.3 | −60.0 | 20.6 |
n-pentane | C5H12 | 36.0 | −129.0 | −40.0 | 30.0 |
n-hexane | C6H14 | 69.0 | −95.4 | −22.0 | 47.9 |
n-heptane | C7H16 | 98.4 | −90.6 | −4.0 | 56.0 |
n-octane | C8H18 | 125.6 | −56.7 | 13.0 | 64.4 |
n-nonane | C9H20 | 150.5 | −53.5 | 31.0 | 60.9 |
n-decane | C10H22 | 174.1 | −29.7 | 46.0 | 65.5 |
n-undecane | C11H24 | 195.9 | −25.5 | 62.0 | 79.0 |
n-dodecane | C12H26 | 216.3 | −9.6 | 83.0 | 72.9 |
n-tridecane | C13H28 | 235.4 | −5.4 | 94.0 | 88.0 |
n-tetradecane | C14H30 | 253.6 | 5.9 | 100.0 | 95.0 |
n-pentadecane | C15H32 | 270.6 | 10.0 | N/A | 98.0 |
n-hexadecane | C16H34 | 286.9 | 18.2 | 135.0 | 100.0 |
n-heptadecane | C17H36 | 303.0 | 22.0 | 149.0 | 105.0 |
n-octadecane | C18H38 | 316.0 | 28.2 | 166.0 | 110.0 |
2.2. Illuminating the Pathways of Molecular Transformation
- Tricoordinated carbenium ion;
- Pentacoordinated carbonium ion (extremely unstable).
3. n-Hexadecane Hydroisomerization on Bifunctional Catalysts
3.1. Development of Hydroisomerization Catalysts
3.2. Analysis of the Relationship between Catalyst Characteristics and Activity
3.2.1. Shape-Selectivity
3.2.2. Effect of the Active Metal Site
3.2.3. Effect of the Acidity
4. Impact of Operating Parameters on Process Efficiency
5. Tolerance of Bifunctional Catalysts to Poisons and Deactivation
5.1. The Effect of Impurities-Containing Feed
5.2. The Impact of Water
5.3. Deactivation by Coke Deposition
6. Cost-Effective and Eco-Friendly Synthesis Approaches
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kazakov, M.O.; Smirnova, M.Y.; Dubinin, M.E.; Bogomolova, T.S.; Dik, P.P.; Golubev, I.S.; Revyakin, M.E.; Klimov, O.V.; Noskov, A.S. Combining USY and ZSM-23 in Pt/zeolite hydrocracking catalyst to produce diesel and lube base oil with improved cold flow properties. Fuel 2023, 344, 128085. [Google Scholar] [CrossRef]
- Viswanadham, N.; Saxena, S.K.; Panwar, R.; Ray, A. A single-step catalytic process for the production of high-octane molecules from normal paraffins using zeolite supported bi-functional catalysts. Chem. Eng. Process. Process Intensif. 2022, 177, 108990. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, L.; Zhang, L.; Zhang, H.; Ren, J. Function of well-established mesoporous layers of recrystallized ZSM-22 zeolites in the catalytic performance of n-alkane isomerization. New J. Chem. 2020, 44, 4744–4754. [Google Scholar] [CrossRef]
- Li, K.; Cui, T.; Zhao, J.; Liang, C.; Li, C. Regulate the mesopores and acidic structure of Pt/USY zeolite catalyst for improved performance in the hydroisomerization of Phenanthrene to Alkyl-adamantane. Chem. Eng. Sci. 2023, 279, 118957. [Google Scholar] [CrossRef]
- Chang, T.; Liu, S. Role of the mesoporous diameters of hierarchical ZSM-22/MCM-41 zeolite for n-alkane isomerization. Mol. Catal. 2021, 503, 111420. [Google Scholar] [CrossRef]
- Li, L.; Shen, K.; Huang, X.; Lin, Y.; Liu, Y. SAPO-11 with preferential growth along the a-direction as an improved active catalyst in long-alkane isomerization reaction. Microporous Mesoporous Mater. 2021, 313, 110827. [Google Scholar] [CrossRef]
- Mäki-Arvela, P.; Azkaar, M.; Vajglová, Z.; Aho, A.; Hemming, J.; Peurla, M.; Eränen, K.; Kumar, N.; Murzin, D.Y. Hexadecane hydrocracking for production of jet fuels from renewable diesel over proton and metal modified H-Beta zeolites. Mol. Catal. 2019, 476, 110515. [Google Scholar]
- Mäki-Arvela, P.; Kaka khel, T.A.; Azkaar, M.; Engblom, S.; Murzin, D.Y. Catalytic hydroisomerization of long-chain hydrocarbons for the production of fuels. Catalysts 2018, 8, 534. [Google Scholar] [CrossRef]
- Patrylak, L.; Krylova, M.; Pertko, O.; Voloshyna, Y.; Yakovenko, A. n-Hexane isomerization over nickel-containing mordenite zeolite. Chem. Chem. Technol. 2020, 14, 234–238. [Google Scholar] [CrossRef]
- Akhmedov, V.M.; Al-Khowaiter, S.H. Recent advances and future aspects in the selective isomerization of high n-Alkanes. Catal. Rev. 2007, 49, 33–139. [Google Scholar] [CrossRef]
- Misra, P.; Alvarez-Majmutov, A.; Chen, J. Isomerization catalysts and technologies for biorefining: Opportunities for producing sustainable aviation fuels. Fuel 2023, 351, 128994. [Google Scholar] [CrossRef]
- Echevskii, G.; Weixin, Q.; Kodenev, E.; Toktarev, A.; Chunmei, D. Study of Bifunctional Hydrocracking and Hydroisodeparaffinization Catalysts Based on Zeolites and Alumophosphates, Part 2: Effect of the Activity of Hydrogenating and Acidic Components on the Activity and Selectivity of Hydroisodeparaffinization Catalysts. Catal. Ind. 2020, 12, 81–87. [Google Scholar] [CrossRef]
- Liu, P.; Qiu, Z.; Shi, H.; Song, Y.; Zhao, D.; Wang, P.; Wang, T.; Bao, X. Reducing the diffusion barriers of Pt/Beta catalyzed n-hexane isomerization by SBA-15 addition and high-energy milling. Microporous Mesoporous Mater. 2023, 356, 112591. [Google Scholar] [CrossRef]
- Worldwide Fuel Charter. Gasoline and Diesel Fuel; Worldwide Fuel Charter: Brussels, Belgium, 2019. [Google Scholar]
- Do, P.T.; Crossley, S.; Santikunaporn, M.; Resasco, D.E. Catalytic strategies for improving specific fuel properties. Catalysis 2007, 20, 33–64. [Google Scholar] [CrossRef]
- Yanowitz, J.; Ratcliff, M.A.; McCormick, R.L.; Taylor, J.D.; Murphy, M.J. Compendium of Experimental Cetane Numbers; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2017. [Google Scholar]
- Ribeiro, F.; Marcilly, C.; Guisnet, M. Hydroisomerization of n-hexane on platinum zeolites: I. Kinetic study of the reaction on platinum/Y-zeolite catalysts: Influence of the platinum content. J. Catal. 1982, 78, 267–274. [Google Scholar] [CrossRef]
- Chica, A.; Corma, A. Hydroisomerization of pentane, hexane, and heptane for improving the octane number of gasoline. J. Catal. 1999, 187, 167–176. [Google Scholar] [CrossRef]
- Kosareva, O.A.; Gerasimov, D.N.; Maslov, I.A.; Pigoleva, I.V.; Zaglyadova, S.V.; Fadeev, V.V. Effect of the Zeolite Type on Catalytic Performance in Dewaxing of the Diesel Fraction under Sour Conditions. Energy Fuel 2021, 35, 16020–16034. [Google Scholar] [CrossRef]
- Hiraoka, K.; Kebarle, P. Stabilities and energetics of pentacoordinated carbonium ions. The isomeric protonated ethane ions and some higher analogs: Protonated propane and protonated butane. J. Am. Chem. Soc. 1976, 98, 6119–6125. [Google Scholar] [CrossRef]
- Liu, S.; Luo, C.; Deng, X.; Fang, Y. Toward rational design of narrowly-distributed mesopore on ZSM-22 zeolite for enhanced Pt dispersion and n-alkane isomerization performance. Fuel 2022, 328, 125282. [Google Scholar] [CrossRef]
- Jacobs, P.A.; Martens, J.A. Introduction to acid catalysis with zeolites in hydrocarbon reactions. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1991; Volume 58, pp. 445–496. [Google Scholar]
- Weitkamp, J. Catalytic hydrocracking—Mechanisms and versatility of the process. ChemCatChem 2012, 4, 292–306. [Google Scholar] [CrossRef]
- Weisz, P.; Swegler, E. Stepwise reaction on separate catalytic centers: Isomerization of saturated hydrocarbons. Science 1957, 126, 31–32. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, F.; Ribeiro, F.; Perot, G.; Thomazeau, Y.C.; Guisnet, M. Hydroisomerization and hydrocracking of alkanes: 7. influence of the balance between acid and hydrogenating functions on the transformation of n-decane on pthy catalysts. J. Catal. 1996, 162, 179–189. [Google Scholar] [CrossRef]
- Ravishankar, R.; Sivasanker, S. Hydroisomerization of n-hexane over Pt—H-MCM-22. Appl. Catal. A Gen. 1996, 142, 47–59. [Google Scholar] [CrossRef]
- Kazansky, V.; Frash, M.; Van Santen, R. Quantumchemical study of the isobutane cracking on zeolites. Appl. Catal. A Gen. 1996, 146, 225–247. [Google Scholar] [CrossRef]
- Martens, G.; Marin, G. Kinetics for hydrocracking based on structural classes: Model development and application. AICHE J. 2001, 47, 1607–1622. [Google Scholar] [CrossRef]
- Zschiesche, C.; Himsl, D.; Rakoczy, R.; Reitzmann, A.; Freiding, J.; Wilde, N.; Gläser, R. Hydroisomerization of Long-Chain n-Alkanes over Bifunctional Zeolites with 10-Membered-and 12-Membered-Ring Pores. Chem. Eng. Technol. 2018, 41, 199–204. [Google Scholar] [CrossRef]
- Kotrel, S.; Knözinger, H.; Gates, B. The Haag–Dessau mechanism of protolytic cracking of alkanes. Microporous Mesoporous Mater. 2000, 35, 11–20. [Google Scholar] [CrossRef]
- Shakor, Z.M.; Ramos, M.J.; AbdulRazak, A.A. A detailed reaction kinetic model of light naphtha isomerization on Pt/zeolite catalyst. J. King Saud Univ. Eng. Sci. 2022, 34, 303–308. [Google Scholar] [CrossRef]
- Noh, G.; Shi, Z.; Zones, S.I.; Iglesia, E. Isomerization and β-scission reactions of alkanes on bifunctional metal-acid catalysts: Consequences of confinement and diffusional constraints on reactivity and selectivity. J. Catal. 2018, 368, 389–410. [Google Scholar] [CrossRef]
- Qi, Y.; Cai, C.-F.; Sun, P.; Wang, D.-W.; Zhu, H.-J. Crude oil cracking in deep reservoirs: A review of the controlling factors and estimation methods. Pet. Sci. 2023, 20, 1978–1997. [Google Scholar] [CrossRef]
- Hu, W.; Noh, G.; Iglesia, E. Consequences of metal-acid site proximity for alkane isomerization and β-scission mediated by bifunctional catalytic cascades. J. Catal. 2023, 425, 125–142. [Google Scholar] [CrossRef]
- Wu, X.; Lei, X.; Wang, S.; Zhang, H.; Cui, Q.; Bao, X.; Wang, T.; Yuan, P. Tuning the acidity and pore structures of NiP based bifunctional catalyst for efficient n-hexane isomerization. Fuel 2022, 324, 124396. [Google Scholar] [CrossRef]
- Voloshyna, Y.; Pertko, O.; Patrylak, L.; Yakovenko, A. Peculiarities of palladium-containing MFI-type zeolites as catalysts of isomerization of linear alkanes. Vopr. Khimii I Khimicheskoi Tekhnol. 2020, 6, 26–32. [Google Scholar] [CrossRef]
- Leprince, P. Petroleum Refining. Vol. 3 Conversion Processes; Editions Technip: Paris, France, 2001; Volume 3. [Google Scholar]
- McKetta, J.J., Jr. Encyclopedia of Chemical Processing and Design; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Del Campo, P.; Martínez, C.; Corma, A. Activation and conversion of alkanes in the confined space of zeolite-type materials. Chem. Soc. Rev. 2021, 50, 8511–8595. [Google Scholar] [CrossRef] [PubMed]
- Gomes, L.C.; de Oliveira Rosas, D.; Chistone, R.C.; Zotin, F.M.Z.; de Araujo, L.R.R.; Zotin, J.L. Hydroisomerization of n-hexadecane using Pt/alumina-Beta zeolite catalysts for producing renewable diesel with low pour point. Fuel 2017, 209, 521–528. [Google Scholar] [CrossRef]
- Dhar, A.; Vekariya, R.L.; Bhadja, P. n-Alkane isomerization by catalysis—A method of industrial importance: An overview. Cogent Chem. 2018, 4, 1514686. [Google Scholar] [CrossRef]
- Morris, R.E.; Nachtigall, P. Zeolites in Catalysis: Properties and Applications; Royal Society of Chemistry: London, UK, 2017. [Google Scholar]
- Primo, A.; Garcia, H. Zeolites as catalysts in oil refining. Chem. Soc. Rev. 2014, 43, 7548–7561. [Google Scholar] [CrossRef]
- Gao, S.; Wu, Z. Advances in the One- Dimensional Pore Zeolite for Hydroisomerization. J. Petrochem. Univ. 2023, 36, 51. [Google Scholar] [CrossRef]
- Zhang, L.; Bai, X.; Fu, W.; Yang, X.; Sun, F.; He, L.; Tang, T. Superior activity and isomerization selectivity in n-dodecane hydroisomerization over Ni clusters on ZSM-22 zeolite with structural defects. Fuel 2023, 332, 126204. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, D.; Lou, B.; Yu, R.; Men, Z.; Li, M.; Li, Z. Hydroisomerization of n-decane over micro/mesoporous Pt-containing bifunctional catalysts: Effects of the MCM-41 incorporation with Y zeolite. Fuel 2018, 226, 204–212. [Google Scholar] [CrossRef]
- Csicsery, S.M. Shape-selective catalysis in zeolites. Zeolites 1984, 4, 202–213. [Google Scholar] [CrossRef]
- Marcilly, C.R. Where and how shape selectivity of molecular sieves operates in refining and petrochemistry catalytic processes. Top. Catal. 2000, 13, 357–366. [Google Scholar] [CrossRef]
- Degnan Jr, T.F. The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries. J. Catal. 2003, 216, 32–46. [Google Scholar] [CrossRef]
- Han, Y.; Yuan, J.; Xing, M.; Cao, J.; Chen, Z.; Zhang, L.; Tao, Z.; Liu, Z.; Zheng, A.; Wen, X. Shape selectivity of zeolite for hydroisomerization of long-chain alkanes. New J. Chem. 2023, 47, 1401–1412. [Google Scholar] [CrossRef]
- Wang, M.; Han, Y.; Liu, S.; Liu, Z.; An, D.; Zhang, Z.; Cheng, K.; Zhang, Q.; Wang, Y. Pore-mouth catalysis boosting the formation of iso-paraffins from syngas over bifunctional catalysts. Chin. J. Catal. 2021, 42, 2197–2205. [Google Scholar] [CrossRef]
- Brito, L.; Pirngruber, G.D.; Perez-Pellitero, J.; Guillon, E.; Albrieux, F.; Martens, J.A. Shape selectivity effects in the hydroconversion of perhydrophenanthrene over bifunctional catalysts. Catal. Sci. Technol. 2021, 11, 7667–7682. [Google Scholar] [CrossRef]
- Guo, Z.; Li, X.; Hu, S.; Ye, G.; Zhou, X.; Coppens, M.O. Understanding the role of internal diffusion barriers in Pt/Beta zeolite catalyzed isomerization of n-heptane. Angew. Chem. 2020, 132, 1564–1567. [Google Scholar] [CrossRef]
- Chen, N.; Lucki, S.; Mower, E. Cage effect on product distribution from cracking over crystalline aluminosilicate zeolites. J. Catal. 1969, 13, 329–332. [Google Scholar] [CrossRef]
- Kärger, J.; Ruthven, D.M.; Valiullin, R. Diffusion in nanopores: Inspecting the grounds. Adsorption 2021, 27, 267–281. [Google Scholar] [CrossRef]
- Derouane, E.G. Shape selectivity in catalysis by zeolites: The nest effect. J. Catal. 1986, 100, 541–544. [Google Scholar] [CrossRef]
- Romero, D.; Rohling, R.; Meng, L.; Rigutto, M.; Hensen, E.J. Shape selectivity in linear paraffins hydroconversion in 10-membered-ring pore zeolites. J. Catal. 2021, 394, 284–298. [Google Scholar] [CrossRef]
- Yu, Q.; Huang, Z.; Sun, H.; Li, L.; Zhu, X.; Ren, S.; Shen, B. Investigation on n-Alkane Hydroisomerization, a Comparison of IM-5 to ZSM-5 Zeolites. Ind. Eng. Chem. Res. 2018, 57, 14448–14459. [Google Scholar] [CrossRef]
- Mehla, S.; Krishnamurthy, K.; Viswanathan, B.; John, M.; Niwate, Y.; Kumar, K.; Pai, S.M.; Newalkar, B. n-Hexadecane hydroisomerization over Pt/ZSM-12: Role of Si/Al ratio on product distribution. J. Porous Mater. 2013, 20, 1023–1029. [Google Scholar] [CrossRef]
- Araujo, A.S.; Silva, A.O.; Souza, M.J.; Coutinho, A.C.; Aquino, J.M.; Moura, J.A.; Pedrosa, A.M. Crystallization of ZSM-12 zeolite with different Si/Al ratio. Adsorption 2005, 11, 159–165. [Google Scholar] [CrossRef]
- Li, S.; Liutkova, A.; Kosinov, N.; Hensen, E.J. Zeolite Nanocrystals (MOR, EU-1, and ZSM-12) Synthesized Using a Versatile Diquaternary Ammonium Template as Robust Catalysts. ACS Appl. Nano Mater. 2022, 5, 16862–16871. [Google Scholar] [CrossRef]
- Gopal, S.; Yoo, K.; Smirniotis, P.G. Synthesis of Al-rich ZSM-12 using TEAOH as template. Microporous Mesoporous Mater. 2001, 49, 149–156. [Google Scholar] [CrossRef]
- Mehla, S.; Krishnamurthy, K.; Viswanathan, B.; John, M.; Niwate, Y.; Kumar, S.K.; Pai, S.M.; Newalkar, B.L. n-Hexadecane hydroisomerization over BTMACl/TEABr/MTEABr templated ZSM-12. Microporous Mesoporous Mater. 2013, 177, 120–126. [Google Scholar] [CrossRef]
- Masoumifard, N.; Kaliaguine, S.; Kleitz, F. Synergy between structure direction and alkalinity toward fast crystallization, controlled morphology and high phase purity of ZSM-12 zeolite. Microporous Mesoporous Mater. 2016, 227, 258–271. [Google Scholar] [CrossRef]
- Li, S.; Mezari, B.; Wu, H.; Kosinov, N.; Hensen, E.J. ZSM-12 nanocrystals with tunable acidity directed by rigid diquats: Synthesis and catalytic applications. Fuel 2023, 333, 126363. [Google Scholar] [CrossRef]
- Silva, B.J.; de Sousa, L.V.; Quintela, P.H.; Júnior, N.R.A.; Alencar, S.L.; Maciel, P.A.; Santos, J.R.; Sarmento, L.R.; Meneghetti, S.M.; Silva, A. Preparation of ZSM-22 zeolite with hierarchical pore structure. Mater. Lett. 2018, 218, 119–122. [Google Scholar] [CrossRef]
- Verboekend, D.; Chabaneix, A.M.; Thomas, K.; Gilson, J.-P.; Pérez-Ramírez, J. Mesoporous ZSM-22 zeolite obtained by desilication: Peculiarities associated with crystal morphology and aluminium distribution. CrystEngComm 2011, 13, 3408–3416. [Google Scholar] [CrossRef]
- Niu, P.; Xi, H.; Ren, J.; Lin, M.; Wang, Q.; Jia, L.; Hou, B.; Li, D. High selectivity for n-dodecane hydroisomerization over highly siliceous ZSM-22 with low Pt loading. Catal. Sci. Technol. 2017, 7, 5055–5068. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, J.; Yang, F.; Zhao, Y.; Zhuang, J.; Lu, X.; Zhu, X.; Zhu, K. Synthesis of ZSM-22 with Enhanced Acidity Using Alcoholamine as a Structure-Directing Agent to Promote the Hydroisomerization of n-Heptane. Ind. Eng. Chem. Res. 2023, 62, 10012–10023. [Google Scholar] [CrossRef]
- Wang, B.; Tian, Z.; Li, P.; Wang, L.; Xu, Y.; Qu, W.; He, Y.; Ma, H.; Xu, Z.; Lin, L. A novel approach to synthesize ZSM-23 zeolite involving N,N-dimethylformamide. Microporous Mesoporous Mater. 2010, 134, 203–209. [Google Scholar] [CrossRef]
- Molino, A.; Łukaszuk, K.; Rojo-Gama, D.; Lillerud, K.P.; Olsbye, U.; Bordiga, S.; Svelle, S.; Beato, P. Conversion of methanol to hydrocarbons over zeolite ZSM-23 (MTT): Exceptional effects of particle size on catalyst lifetime. Chem. Comm. 2017, 53, 6816–6819. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Chen, X.; Liu, Y.; Liang, C. Synthesis of ZSM-23 zeolite with dual structure directing agents for hydroisomerization of n-hexadecane. Microporous Mesoporous Mater. 2018, 268, 216–224. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Muraza, O.; Yoshioka, M.; Yokoi, T. Effect of multi-step desilication and dealumination treatments on the performance of hierarchical EU-1 zeolite for converting methanol to olefins. Microporous Mesoporous Mater. 2017, 241, 79–88. [Google Scholar] [CrossRef]
- Du, Y.; Feng, B.; Jiang, Y.; Yuan, L.; Huang, K.; Li, J. Solvent-Free Synthesis and n-Hexadecane Hydroisomerization Performance of SAPO-11 Catalyst. Eur. J. Inorg. Chem. 2018, 2018, 2599–2606. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Jiang, X.; Su, X.; Kikhtyanin, O.; Wu, W. Hydroisomerization of n-hexadecane over a Pd–Ni2P/SAPO-31 bifunctional catalyst: Synergistic effects of bimetallic active sites. Catal. Sci. Technol. 2018, 8, 817–828. [Google Scholar] [CrossRef]
- Bai, X.; Wei, X.; Liu, Y.; Wu, W. Effect of dealumination of citric acid-modified Hβ molecular sieve on hydroisomerization performance of n-Hexadecane. In Proceedings of the IOP Conference Series: Materials Science and Engineering, The 6th Annual International Conference on Material Science and Environmental Engineering, Chongqing, China, 23–25 November 2018; p. 012040. [Google Scholar]
- Bai, X.; Wei, X.; Liu, Y.; Wu, W. Hydroisomerization of n-hexadecane over Hβ molecular sieve loading palladium bifunctional catalyst: Effect of SiO2/Al2O3 molar ratios. In Proceedings of the IOP Conference Series: Materials Science and Engineering, The 2nd International Workshop on Materials Science and Mechanical Engineering (IWMSME2018), Qingdao, China, 26–28 October 2018; p. 012042. [Google Scholar]
- Smirniotis, P.G.; Ruckenstein, E. Comparison of the Performance of ZSM-5,.beta. Zeolite, Y, USY, and Their Composites in the Catalytic Cracking of n-Octane, 2,2,4-Trimethylpentane, and 1-Octene. Ind. Eng. Chem. Res. 1994, 33, 800–813. [Google Scholar] [CrossRef]
- Zhang, J.; Maximov, A.; Bai, X.; Wang, W.; Xiao, L.; Lin, H.; Wu, W. Shape selectivity in hydroisomerization of n-Hexadecane over Pd supported on zeolites: ZSM-22, ZSM-12 and Beta. Russ. J. Appl. Chem. 2020, 93, 1427–1437. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Y.; Wang, L.; Zhang, Q.; Tsang, C.-W.; Liang, C. Shape selectivity in hydroisomerization of hexadecane over Pt supported on 10-ring zeolites: ZSM-22, ZSM-23, ZSM-35, and ZSM-48. Ind. Eng. Chem. Res. 2016, 55, 6069–6078. [Google Scholar] [CrossRef]
- Liu, Y.; Pinnavaia, T.J. Aluminosilicate nanoparticles for catalytic hydrocarbon cracking. J. Am. Chem. Soc. 2003, 125, 2376–2377. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, A.; Stoecker, M.; Schmidt, R. Composites of micro-and mesoporous materials: Simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach. Microporous Mesoporous Mater. 1999, 27, 181–192. [Google Scholar] [CrossRef]
- Cheng, K.; van der Wal, L.I.; Yoshida, H.; Oenema, J.; Harmel, J.; Zhang, Z.; Sunley, G.; Zečević, J.; de Jong, K.P. Impact of the spatial organization of bifunctional metal–zeolite catalysts on the hydroisomerization of light alkanes. Angew. Chem. 2020, 132, 3620–3628. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, S.; Wang, H.; Ning, Q.; Zhang, H.; Yun, Y.; Ren, J.; Li, Y.-W. Synthesis and characterization of bundle-shaped ZSM-22 zeolite via the oriented fusion of nanorods and its enhanced isomerization performance. J. Catal. 2018, 361, 177–185. [Google Scholar] [CrossRef]
- Morávková, J.; Pilař, R.; Bortnovsky, O.; Kaucký, D.; Vondrová, A.; Rathousky, J.; Sádovská, G.; Sazama, P. The effect of the nanoscale intimacy of platinum and acid centres on the hydroisomerization of short-chain alkanes. Appl. Catal. A Gen. 2022, 634, 118535. [Google Scholar] [CrossRef]
- Ye, G.; Sun, Y.; Guo, Z.; Zhu, K.; Liu, H.; Zhou, X.; Coppens, M.-O. Effects of zeolite particle size and internal grain boundaries on Pt/Beta catalyzed isomerization of n-pentane. J. Catal. 2018, 360, 152–159. [Google Scholar] [CrossRef]
- Wang, W.; Liu, C.-J.; Wu, W. Bifunctional catalysts for the hydroisomerization of n-alkanes: The effects of metal–acid balance and textural structure. Catal. Sci. Technol. 2019, 9, 4162–4187. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, Z.; Wu, B.; Xu, J.; Huo, C.; Li, K.; Chen, H.; Yang, Y.; Li, Y. Effect of metal precursors on the performance of Pt/ZSM-22 catalysts for n-hexadecane hydroisomerization. J. Catal. 2015, 322, 1–13. [Google Scholar] [CrossRef]
- Geng, L.; Gong, J.; Qiao, G.; Ye, S.; Zheng, J.; Zhang, N.; Chen, B. Effect of metal precursors on the performance of Pt/SAPO-11 catalysts for n-dodecane hydroisomerization. ACS Omega 2019, 4, 12598–12605. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yi, F.; Ma, C.; Gao, X.; Liu, S.; Tao, Z.; Wu, B.; Xiang, H.; Yang, Y.; Li, Y.-W. Hydroisomerization of n-heptane on a new kind of bifunctional catalysts with palladium nanoparticles encapsulating inside zeolites. Fuel 2020, 268, 117241. [Google Scholar] [CrossRef]
- Guisnet, M. “Ideal” bifunctional catalysis over Pt-acid zeolites. Catal. Today 2013, 218, 123–134. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, Z.; Wu, B.; Huimin, C.; Xu, J.; Yang, Y.; Li, Y. Shape-controlled synthesis of Pt particles and their catalytic performances in the n-hexadecane hydroconversion. Catal. Today 2016, 259, 331–339. [Google Scholar] [CrossRef]
- Roy, S.; Bouchy, C.; Pham-Huu, C.; Crouzet, C.; Ledoux, M.J. Slurry isomerization of n-hexadecane over MoO3-carbon-modified, Pt/β-zeolite, Pt/ZSM-22 and Pt/SAPO-11 catalysts at medium pressure. In Studies in Surface Science and Catalysis; Corma, A., Melo, F.V., Mendiorozm, S., Fierro, J.L.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 130, pp. 2423–2428. [Google Scholar]
- Fedyna, M.; Żak, A.; Jaroszewska, K.; Mokrzycki, J.; Trawczyński, J. Composite of Pt/AlSBA-15+ zeolite catalyst for the hydroisomerization of n-hexadecane: The effect of platinum precursor. Microporous Mesoporous Mater. 2020, 305, 110366. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, J.; Bai, D.; Li, C.; Chen, X.; Liang, C. Effect of Extra-Framework Fe Species in Pt/Fe/ZSM-23 Catalysts on Hydroisomerization Performance of n-Hexadecane. Ind. Eng. Chem. Res. 2021, 61, 279–286. [Google Scholar] [CrossRef]
- Song, C.Y.; Meng, J.P.; Chuang, L.I.; Zeyaodong, P.; Liang, C.H. Synthesis of ZSM-22/ZSM-23 intergrowth zeolite as the catalyst support for hydroisomerization of n-hexadecane. J. Fuel Chem. Technol. 2021, 49, 712–725. [Google Scholar] [CrossRef]
- Zhang, M.; Li, C.; Chen, X.; Chen, Y.; Liang, C. Hierarchical ZSM-48-supported nickel catalysts with enhanced hydroisomerization performance of hexadecane. Ind. Eng. Chem. Res. 2019, 58, 19855–19861. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, L.; Chen, Y.; Zhang, Q.; Liang, C. Creating mesopores in ZSM-48 zeolite by alkali treatment: Enhanced catalyst for hydroisomerization of hexadecane. J. Energy Chem. 2016, 25, 539–544. [Google Scholar] [CrossRef]
- Pimerzin, A.A.; Roganov, A.A.; Verevkin, S.P.; Konnova, M.E.; Pilshchikov, V.A.; Pimerzin, A.A. Bifunctional catalysts with noble metals on composite Al2O3-SAPO-11 carrier and their comparison with CoMoS one in n-hexadecane hydroisomerization. Catal. Today 2019, 329, 71–81. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, J.; Deng, F. Solid-state NMR for metal-containing zeolites: From active sites to reaction mechanism. Front. Chem. Sci. Eng. 2020, 14, 159–187. [Google Scholar] [CrossRef]
- Schulman, E.; Wu, W.; Liu, D. Two-dimensional zeolite materials: Structural and acidity properties. Materials 2020, 13, 1822. [Google Scholar] [CrossRef]
- Almutairi, S.M.; Mezari, B.; Filonenko, G.A.; Magusin, P.C.; Rigutto, M.S.; Pidko, E.A.; Hensen, E.J. Influence of extraframework aluminum on the brønsted acidity and catalytic reactivity of faujasite zeolite. ChemCatChem 2013, 5, 452–466. [Google Scholar] [CrossRef]
- Izan, S.; Triwahyono, S.; Jalil, A.; Majid, Z.; Fatah, N.; Hamid, M.; Ibrahim, M. Additional Lewis acid sites of protonated fibrous silica@BEA zeolite (HSi@BEA) improving the generation of protonic acid sites in the isomerization of C6 alkane and cycloalkanes. Appl. Catal. A Gen. 2019, 570, 228–237. [Google Scholar] [CrossRef]
- Vogt, E.T.; Weckhuysen, B.M. Fluid catalytic cracking: Recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 2015, 44, 7342–7370. [Google Scholar] [CrossRef]
- Ennaert, T.; Van Aelst, J.; Dijkmans, J.; De Clercq, R.; Schutyser, W.; Dusselier, M.; Verboekend, D.; Sels, B.F. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem. Soc. Rev. 2016, 45, 584–611. [Google Scholar] [CrossRef]
- Dzhikiya, O.; Smolikov, M.; Belopukhov, E.; Yablokova, S.; Doronin, A.; Gulyaeva, T.; Muromtsev, I.; Belyi, A. A study of fluorine-containing catalysts based on MOR and BEA zeolites in isomerization of n-hexane. In Proceedings of the AIP Conference Proceedings, Oil and Gas Engineering (OGE-2020), Omsk, Russia, 26–29 February 2020. [Google Scholar]
- Sun, J.; Mu, C.; Guo, D.; Zhao, Y.; Wang, S.; Ma, X. Effects of intimacy between acid and metal sites on the isomerization of n-C16 at the large/minor nanoscale and atomic scale. ACS Catal. 2022, 12, 4092–4102. [Google Scholar] [CrossRef]
- Harmel, J.; van der Wal, L.; Zečević, J.; de Jongh, P.; de Jong, K.P. Metal-Acid Bifunctional Catalysts for Hydro-Isomerization of Alkanes: Impact of Intimacy for Mesoporous Solid Acids. In Proceedings of the 2019 North American Catalysis Society Meeting, Chicago, IL, USA, 23–28 June 2019. [Google Scholar]
- Chen, Y.; Li, C.; Chen, X.; Liu, Y.; Tsang, C.-W.; Liang, C. Synthesis and characterization of iron-substituted ZSM-23 zeolite catalysts with highly selective hydroisomerization of n-hexadecane. Ind. Eng. Chem. Res. 2018, 57, 13721–13730. [Google Scholar] [CrossRef]
- Blasco, T.; Chica, A.; Corma, A.; Murphy, W.; Agúndez-Rodríguez, J.; Pérez-Pariente, J. Changing the Si distribution in SAPO-11 by synthesis with surfactants improves the hydroisomerization/dewaxing properties. J. Catal. 2006, 242, 153–161. [Google Scholar] [CrossRef]
- Gopal, S.; Smirniotis, P.G. Factors affecting isomer yield for n-heptane hydroisomerization over as-synthesized and dealuminated zeolite catalysts loaded with platinum. J. Catal. 2004, 225, 278–287. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, W.; Liu, L.; Niu, X.; Wang, Q. Tuning the Structure and Acidity of Pt/Hierarchical SSZ-32 Catalysts to Boost the Selective Hydroisomerization of n-Hexadecane. Catalysts 2023, 13, 702. [Google Scholar] [CrossRef]
- Li, T.; Wang, W.; Feng, Z.; Bai, X.; Su, X.; Yang, L.; Jia, G.; Guo, C.; Wu, W. The hydroisomerization of n-hexane over highly selective Pd/ZSM-22 bifunctional catalysts: The improvements of metal-acid balance by room temperature electron reduction method. Fuel 2020, 272, 117717. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, G.; Zhao, L.; Gao, J.; Xu, C. Effect of metal–acid balance and textual modifications on hydroisomerization catalysts for n-alkanes with different chain length: A mini-review. Fuel 2022, 315, 122809. [Google Scholar] [CrossRef]
- Batalha, N.; Pinard, L.; Bouchy, C.; Guillon, E.; Guisnet, M. n-Hexadecane hydroisomerization over Pt-HBEA catalysts. Quantification and effect of the intimacy between metal and protonic sites. J. Catal. 2013, 307, 122–131. [Google Scholar] [CrossRef]
- Parmar, S.; Pant, K.K.; John, M.; Kumar, K.; Pai, S.M.; Gupta, S.; Newalkar, B.L. Hydroisomerization of n-hexadecane over Brønsted acid site tailored Pt/ZSM-12. J. Porous Mater. 2014, 21, 849–857. [Google Scholar] [CrossRef]
- Lee, S.-W.; Ihm, S.-K. Characteristics of magnesium-promoted Pt/ZSM-23 catalyst for the hydroisomerization of n-hexadecane. Ind. Eng. Chem. Res. 2013, 52, 15359–15365. [Google Scholar] [CrossRef]
- Liu, S.; Ren, J.; Zhu, S.; Zhang, H.; Lv, E.; Xu, J.; Li, Y.-W. Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance. J. Catal. 2015, 330, 485–496. [Google Scholar] [CrossRef]
- Batalha, N.; Morisset, S.; Pinard, L.; Maupin, I.; Lemberton, J.; Lemos, F.; Pouilloux, Y. BEA zeolite nanocrystals dispersed over alumina for n-hexadecane hydroisomerization. Microporous Mesoporous Mater. 2013, 166, 161–166. [Google Scholar] [CrossRef]
- Parmar, S.; Pant, K.K.; John, M.; Kumar, K.; Pai, S.M.; Newalkar, B.L. Hydroisomerization of n-hexadecane over Pt/ZSM-22 framework: Effect of divalent cation exchange. J. Mol. Catal. A Chem. 2015, 404, 47–56. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, M.; Wang, L.; Zhang, X.; Li, G. Modulating acid site distribution in MTT channels for controllable hydroisomerization of long-chain n-alkanes. Fuel Process. Technol. 2023, 241, 107605. [Google Scholar] [CrossRef]
- Zhang, M.; Li, C.; Chen, Y.; Tsang, C.-W.; Zhang, Q.; Liang, C. Hydroisomerization of hexadecane over platinum supported on EU-1/ZSM-48 intergrowth zeolite catalysts. Catal. Sci. Technol. 2016, 6, 8016–8023. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Cheng, X.; Kang, X.; Wu, A.; Tian, C.; Fu, H. Trace Pt Clusters Dispersed on SAPO-11 Promoting the Synergy of Metal Sites with Acid Sites for High-Effective Hydroisomerization of n-Alkanes. Small Methods 2019, 3, 1800510. [Google Scholar] [CrossRef]
- Guo, C.; Wang, W.; Zhang, Y.; Lin, H.; Jia, G.; Li, T.; Xin, Q.; Bai, X.; Wu, W. Influences of the metal-acid proximity of Pd-SAPO-31 bifunctional catalysts for n-hexadecane hydroisomerization. Fuel Process. Technol. 2021, 214, 106717. [Google Scholar] [CrossRef]
- Wei, X.; Kikhtyanin, O.; Parmon, V.; Wu, W.; Bai, X.; Zhang, J.; Xiao, L.; Su, X.; Zhang, Y. Synergetic effect between the metal and acid sites of Pd/SAPO-41 bifunctional catalysts in n-hexadecane hydroisomerization. J. Porous Mater. 2018, 25, 235–247. [Google Scholar] [CrossRef]
- Jia, G.; Guo, C.; Wang, W.; Bai, X.; Wei, X.; Su, X.; Li, T.; Xiao, L.; Wu, W. The synergic effects of highly selective bimetallic Pt-Pd/SAPO-41 catalysts for the n-hexadecane hydroisomerization. Front. Chem. Sci. Eng. 2021, 15, 1111–1124. [Google Scholar] [CrossRef]
- Wu, Q.; Jia, G.; Zhang, Y.; Liu, Z.; Li, X.; Wang, W.; Wu, W. Bifunctional catalysts based on hierarchical SAPO-41 nanosheet for Highly-efficient hydroisomerization of n-Hexadecane. Fuel 2023, 352, 129066. [Google Scholar] [CrossRef]
- Mendes, P.S.; Mota, F.M.; Silva, J.M.; Ribeiro, M.F.; Daudin, A.; Bouchy, C. A systematic study on mixtures of Pt/zeolite as hydroisomerization catalysts. Catal. Sci. Technol. 2017, 7, 1095–1107. [Google Scholar] [CrossRef]
- Bauer, F.; Ficht, K.; Bertmer, M.; Einicke, W.-D.; Kuchling, T.; Gläser, R. Hydroisomerization of long-chain paraffins over nano-sized bimetallic Pt–Pd/H-beta catalysts. Catal. Sci. Technol. 2014, 4, 4045–4054. [Google Scholar] [CrossRef]
- Vinogradov, N.; Rubtsova, M.; Glotov, A.; Tochilin, N.; Vinokurov, V.; Pimerzin, A. Hydroconversion of n-Hexadecane on Zeolite-Containing Sulfide-Based Catalysts: Influence of Nitrogen Impurity in the Feedstock on the Hydroisomerization Selectivity. Pet. Chem. 2021, 61, 739–747. [Google Scholar] [CrossRef]
- Jaroszewska, K.; Fedyna, M.; Trawczyński, J. Hydroisomerization of long-chain n-alkanes over Pt/AlSBA-15+ zeolite bimodal catalysts. Appl. Catal. B Environ. 2019, 255, 117756. [Google Scholar] [CrossRef]
- Bogomolova, T.; Smirnova, M.Y.; Klimov, O.; Noskov, A. Studying the Hydroisomerization of Diesel Fractions with Different Concentrations of Nitrogen-Containing Compounds on Bifunctional Catalysts Based on ZSM-23 and Non-Noble Metals. Catal. Ind. 2023, 15, 182–189. [Google Scholar] [CrossRef]
- Chen, N.; Degnan, T.; Lutner, J.; Pelrine, B. The deactivation of ZSM-5 in catalytic dewaxing. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1991; Volume 68, pp. 773–782. [Google Scholar]
- Galperin, L. Hydroisomerization of N-decane in the presence of sulfur and nitrogen compounds. Appl. Catal. A Gen. 2001, 209, 257–268. [Google Scholar] [CrossRef]
- Lee, S.-W.; Ihm, S.-K. Hydroisomerization and hydrocracking over platinum loaded ZSM-23 catalysts in the presence of sulfur and nitrogen compounds for the dewaxing of diesel fuel. Fuel 2014, 134, 237–243. [Google Scholar] [CrossRef]
- Pimerzin, A.; Savinov, A.; Vutolkina, A.; Makova, A.; Glotov, A.; Vinokurov, V.; Pimerzin, A. Transition metal sulfides-and noble metal-based catalysts for N-hexadecane hydroisomerization: A study of poisons tolerance. Catalysts 2020, 10, 594. [Google Scholar] [CrossRef]
- Iskenderova, A. Mechanism of Catalytic Isomerization-Disproportionation Processing of Straight-Run Gasoline. Azerbaijan Chem. J. 2022, 2, 28–33. [Google Scholar] [CrossRef]
- Sun, J.; Yu, Y.; Mu, C.; Guo, X.; Zhao, Y.; Wang, S.; Ma, X. The gradient fabrication and optimization of metal-acid bifunctional catalysts for the hydrogenation of n-C16 to produce bio-jet fuel component. Fuel 2023, 353, 129229. [Google Scholar] [CrossRef]
- Pham, T.N.; Nguyen, V.; Wang, B.; White, J.L.; Crossley, S. Quantifying the influence of water on the mobility of aluminum species and their effects on alkane cracking in zeolites. ACS Catal. 2021, 11, 6982–6994. [Google Scholar] [CrossRef]
- Yan, T. The promotional effect of water in hydrocracking. J. Catal. 1972, 25, 204–211. [Google Scholar] [CrossRef]
- Brosius, R.; Kooyman, P.J.; Fletcher, J.C. Selective formation of linear alkanes from n-hexadecane primary hydrocracking in shape-selective MFI zeolites by competitive adsorption of water. ACS Catal. 2016, 6, 7710–7715. [Google Scholar] [CrossRef]
- Guisnet, M.; Magnoux, P. Coking and deactivation of zeolites: Influence of the pore structure. Appl. Catal. 1989, 54, 1–27. [Google Scholar] [CrossRef]
- Guisnet, M. “Coke” molecules trapped in the micropores of zeolites as active species in hydrocarbon transformations. J. Mol. Catal. A Chem. 2002, 182, 367–382. [Google Scholar] [CrossRef]
- Sun, Y.; Wei, L.; Zhang, Z.; Zhang, H.; Li, Y. Coke formation over zeolite catalysts in light alkanes aromatization and anti-carbon-deposition strategies and perspectives: A review. Energy Fuel 2023, 37, 1657–1677. [Google Scholar] [CrossRef]
- Guisnet, M.; Magnoux, P. Deactivation of zeolites by coking. Prevention of deactivation and regeneration. In Zeolite Microporous Solids: Synthesis, Structure, and Reactivity; Springer: Dordrecht, The Netherlands, 1992; pp. 457–474. [Google Scholar]
- Nazarova, G.Y.; Ivashkina, E.N.; Ivanchina, E.D.; Vosmerikov, A.V.; Vosmerikova, L.N.; Antonov, A.V. A model of catalytic cracking: Product distribution and catalyst deactivation depending on saturates, aromatics and resins content in feed. Catalysts 2021, 11, 701. [Google Scholar] [CrossRef]
- Muhammad, I.; Makwashi, N.; Ahmed, T.G.; Manos, G.; Zhao, D. A Mechanistic Model on Catalyst Deactivation by Coke Formation in a CSTR Reactor. Processes 2023, 11, 944. [Google Scholar] [CrossRef]
- Guisnet, M.; Magnoux, P. Organic chemistry of coke formation. Appl. Catal. A Gen. 2001, 212, 83–96. [Google Scholar] [CrossRef]
- Bauer, F.; Karge, H.G. Characterization of coke on zeolites. In Characterization II; Springer: Berlin/Heidelberg, Germany, 2006; pp. 249–364. [Google Scholar]
- Guisnet, M.; Magnoux, P. Deactivation by coking of zeolite catalysts. Prevention of deactivation. Optimal conditions for regeneration. Catal. Today 1997, 36, 477–483. [Google Scholar] [CrossRef]
- Guisnet, M.; Costa, L.; Ribeiro, F.R. Prevention of zeolite deactivation by coking. J. Mol. Catal. A Chem. 2009, 305, 69–83. [Google Scholar] [CrossRef]
- Shehab, A. The Role of Carbon in the Catalytic Isomerisation-Cracking of n-Alkanes. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2018. [Google Scholar]
- Brillis, A.A.; Manos, G. Coke formation during catalytic cracking of C8 aliphatic hydrocarbons over ultrastable Y zeolite. Ind. Eng. Chem. Res. 2003, 42, 2292–2298. [Google Scholar] [CrossRef]
- Forzatti, P.; Lietti, L. Catalyst deactivation. Catal. Today 1999, 52, 165–181. [Google Scholar] [CrossRef]
- Rombi, E.; Monaci, R.; Solinas, V. Kinetics of catalyst deactivation. An example: Methylnaphthalene transformation. Catal. Today 1999, 52, 321–330. [Google Scholar] [CrossRef]
- Richardson, S.M.; Nagaishi, H.; Gray, M.R. Initial coke deposition on a NiMo/γ-Al2O3 bitumen hydroprocessing catalyst. Ind. Eng. Chem. Res. 1996, 35, 3940–3950. [Google Scholar] [CrossRef]
- Muegge, B.; Massoth, F. Basic studies of deactivation of hydrotreating catalysts with anthracene. Fuel Process. Technol. 1991, 29, 19–30. [Google Scholar] [CrossRef]
- Zhang, X.; Chodakowski, M.; Shaw, J.M. Impact of multiphase behavior on coke deposition in a commercial hydrotreating catalyst under sedimentation conditions. Energy Fuel 2005, 19, 1405–1411. [Google Scholar] [CrossRef]
- Chen, S.; Manos, G. Study of coke and coke precursors during catalytic cracking of n-hexane and 1-hexene over ultrastable Y zeolite. Catal. Lett. 2004, 96, 195–200. [Google Scholar] [CrossRef]
- Chen, S.; Manos, G. In situ thermogravimetric study of coke formation during catalytic cracking of normal hexane and 1-hexene over ultrastable Y zeolite. J. Catal. 2004, 226, 343–350. [Google Scholar] [CrossRef]
- Holm, M.S.; Taarning, E.; Egeblad, K.; Christensen, C.H. Catalysis with hierarchical zeolites. Catal. Today 2011, 168, 3–16. [Google Scholar] [CrossRef]
- Da Rocha, J.D.G.; Macuvele, D.L.P.; de Andrade, C.J.; Riella, H.G.; Padoin, N.; Soares, C. Advances and Environmental Aspects on the Synthesis of Hierarchical Zeolites Revisited: A State-of-the-Art Description. J. Environ. Chem. Eng. 2023, 11, 109397. [Google Scholar] [CrossRef]
- Bornes, C.; Santos-Vieira, I.C.; Vieira, R.; Mafra, L.; Simões, M.M.; Rocha, J. Challenges and opportunities for zeolites in biomass upgrading: Impediments and future directions. Catal. Today 2023, 419, 114159. [Google Scholar] [CrossRef]
- Hu, G.; Yang, J.; Duan, X.; Farnood, R.; Yang, C.; Yang, J.; Liu, W.; Liu, Q. Recent developments and challenges in zeolite-based composite photocatalysts for environmental applications. Chem. Eng. J. 2021, 417, 129209. [Google Scholar] [CrossRef]
- Gosselink, R.W.; Sagala, S.L.; Meeldijk, J.D.; de Jongh, P.E.; de Jong, K.P. Alkaline treatment on commercially available aluminum rich mordenite. Appl. Catal. A Gen. 2010, 382, 65–72. [Google Scholar] [CrossRef]
- Sazama, P.; Pastvova, J.; Kaucky, D.; Moravkova, J.; Rathousky, J.; Jakubec, I.; Sadovska, G. Does hierarchical structure affect the shape selectivity of zeolites? Example of transformation of n-hexane in hydroisomerization. J. Catal. 2018, 364, 262–270. [Google Scholar] [CrossRef]
- Meng, J.; Cui, T.; Bai, D.; Li, C.; Chen, X.; Liang, C. Excellent catalytic performance over hierarchical ZSM-48 zeolite: Cooperative effects of enhanced mesoporosity and highly-accessible acidity. Fuel 2022, 324, 124589. [Google Scholar] [CrossRef]
- Gackowski, M.; Tarach, K.; Podobiński, J.; Jarczewski, S.; Kuśtrowski, P.; Datka, J. Hierarchical zeolites Y obtained by desilication: Porosity, acidity and catalytic properties. Microporous Mesoporous Mater. 2018, 263, 282–288. [Google Scholar] [CrossRef]
- Aumond, T.; Rousseau, J.; Pouilloux, Y.; Pinard, L.; Sachse, A. Synthesis of hierarchical zeolite templated carbons. Carbon Trends 2021, 2, 100014. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, Z.X.; Xie, W.L.; Liu, J.; Li, Y.; Zhang, W.M.; Fu, H.; Lu, Q. Advances on the fast pyrolysis of biomass for the selective preparation of phenolic compounds. Fuel Process. Technol. 2022, 237, 107465. [Google Scholar] [CrossRef]
- Yue, Y.; Hu, Y.; Dong, P.; Li, X.; Liu, H.; Bao, J.; Wang, T.; Bi, X.; Zhu, H.; Yuan, P. Mesoscale depolymerization of natural rectorite mineral via a quasi-solid-phase approach for zeolite synthesis. Chem. Eng. Sci. 2020, 220, 115635. [Google Scholar] [CrossRef]
- Imbachi-Gamba, C.F.; Villa, A. Statistical analysis of the influence of synthesis conditions on the properties of hierarchical zeolite Y. Mater. Today Chem. 2021, 20, 100442. [Google Scholar] [CrossRef]
- Jermy, B.R.; Tanimu, A.; Siddiqui, M.A.; Qureshi, Z.S.; Aitani, A.; Akah, A.; Xu, Q.; AlHerz, M. Crude oil conversion to chemicals over green synthesized ZSM-5 zeolite. Fuel Process. Technol. 2023, 241, 107610. [Google Scholar] [CrossRef]
- Ndlovu, N.Z.; Ameh, A.E.; Petrik, L.F.; Ojumu, T.V. Synthesis and characterisation of pure phase ZSM-5 and sodalite zeolites from coal fly ash. Mater. Today Commun. 2023, 34, 105436. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Dinh, V.P.; Nguyen, H.Q.; Hung, N.T. Zeolite ZSM-5 synthesized from natural silica sources and its applications: A critical review. J. Chem. Technol. Biotechnol. 2023, 98, 1339–1355. [Google Scholar] [CrossRef]
- Demikhova, N.; Rubtsova, M.; Kireev, G.; Cherednichenko, K.; Vinokurov, V.; Glotov, A. Micro-mesoporous catalysts based on ZSM-5 zeolite synthesized from natural clay nanotubes: Preparation and application in the isomerization of C-8 aromatic fraction. Chem. Eng. J. 2023, 453, 139581. [Google Scholar] [CrossRef]
- Stavitskaya, A.; Rubtsova, M.; Glotov, A.; Vinokurov, V.; Vutolkina, A.; Fakhrullin, R.; Lvov, Y. Architectural design of core–shell nanotube systems based on aluminosilicate clay. Nanoscale Adv. 2022, 4, 2823–2835. [Google Scholar] [CrossRef] [PubMed]
- Glotov, A.; Levshakov, N.; Stavitskaya, A.; Artemova, M.; Gushchin, P.; Ivanov, E.; Vinokurov, V.; Lvov, Y. Templated self-assembly of ordered mesoporous silica on clay nanotubes. Chem. Commun. 2019, 55, 5507–5510. [Google Scholar] [CrossRef] [PubMed]
- Glotov, A.; Vutolkina, A.; Pimerzin, A.; Nedolivko, V.; Zasypalov, G.; Stytsenko, V.; Karakhanov, E.; Vinokurov, V. Ruthenium catalysts templated on mesoporous MCM-41 type silica and natural clay nanotubes for hydrogenation of benzene to cyclohexane. Catalysts 2020, 10, 537. [Google Scholar] [CrossRef]
- Glotov, A.; Vutolkina, A.; Pimerzin, A.; Vinokurov, V.; Lvov, Y. Clay nanotube-metal core/shell catalysts for hydroprocesses. Chem. Soc. Rev. 2021, 50, 9240–9277. [Google Scholar] [CrossRef]
- Al-Jubouri, S.M.; Al-Batty, S.I.; Holmes, S.M. Using the ash of common water reeds as a silica source for producing high purity ZSM-5 zeolite microspheres. Microporous Mesoporous Mater. 2021, 316, 110953. [Google Scholar] [CrossRef]
- Khoshbin, R.; Karimzadeh, R. The beneficial use of ultrasound in free template synthesis of nanostructured ZSM-5 zeolite from rice husk ash used in catalytic cracking of light naphtha: Effect of irradiation power. Adv. Powder Technol. 2017, 28, 973–982. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, H.; Chen, P.; Fang, X.; Du, T. Synthesis of La and Ce modified X zeolite from rice husk ash for carbon dioxide capture. J. Mater. Res. Technol. 2020, 9, 4368–4378. [Google Scholar] [CrossRef]
- Flores, C.G.; Schneider, H.; Dornelles, J.S.; Gomes, L.B.; Marcilio, N.R.; Melo, P.J. Synthesis of potassium zeolite from rice husk ash as a silicon source. Clean. Eng. Technol. 2021, 4, 100201. [Google Scholar] [CrossRef]
- Tran-Nguyen, P.L.; Ly, K.-P.; Thanh, L.H.V.; Angkawijaya, A.E.; Santoso, S.P.; Tsai, M.-L.; Ju, Y.-H. Facile synthesis of zeolite NaX using rice husk ash without pretreatment. J. Taiwan Inst. Chem. Eng. 2021, 123, 338–345. [Google Scholar] [CrossRef]
- Masoumi, F.; Safari, S.; Khoshbin, R.; Karimzadeh, R. Utilization of agricultural waste (rice husk) in synthesis of TS-1 zeolite as a support for NiMo nanocatalyst employed in hydrodesulfurization of heavy oil. Adv. Powder Technol. 2023, 34, 104134. [Google Scholar] [CrossRef]
- Lee, J.B.; Ahmed, I.; Lee, G.; Kim, T.-W.; Kim, C.-U.; Jhung, S.H. Synthesis of SSZ-13 zeolites using calcined rice husk as silica source for propylene production from ethylene and carbon dioxide adsorption. J. Ind. Eng. Chem. 2023. [Google Scholar] [CrossRef]
- Liu, H.; Yue, Y.; Shen, T.; Wang, W.; Li, T.; Bao, X. Transformation and crystallization behaviors of titanium species in synthesizing Ti-ZSM-5 zeolites from natural rectorite mineral. Ind. Eng. Chem. Res. 2019, 58, 11861–11870. [Google Scholar] [CrossRef]
- Yue, Y.; Kang, Y.; Bai, Y.; Gu, L.; Liu, H.; Bao, J.; Wang, T.; Yuan, P.; Zhu, H.; Bai, Z. Seed-assisted, template-free synthesis of ZSM-5 zeolite from natural aluminosilicate minerals. Appl. Clay Sci. 2018, 158, 177–185. [Google Scholar] [CrossRef]
- Servatan, M.; Ghadiri, M.; Yazdi, M.K.; Jouyandeh, M.; Mahmodi, G.; Samadi, A.; Zarrintaj, P.; Habibzadeh, S.; Ganjali, M.R.; Saeb, M.R. Synthesis of cost-effective hierarchical MFI-type mesoporous zeolite: Introducing diatomite as silica source. Silicon 2021, 13, 3461–3472. [Google Scholar] [CrossRef]
- Asl, S.M.H.; Masomi, M.; Tajbakhsh, M. Hybrid adaptive neuro-fuzzy inference systems for forecasting benzene, toluene & m-xylene removal from aqueous solutions by HZSM-5 nano-zeolite synthesized from coal fly ash. J. Clean. Prod. 2020, 258, 120688. [Google Scholar] [CrossRef]
- Rajakrishnamoorthy, P.; Karthikeyan, D.; Saravanan, C. Emission reduction technique applied in SI engines exhaust by using zsm5 zeolite as catalysts synthesized from coal fly ash. Mater. Today Proc. 2020, 22, 499–506. [Google Scholar] [CrossRef]
- Song, C.-M.; Feng, Y.; Ma, L.-L. Characterization and hydroisomerization performance of SAPO-11 molecular sieves synthesized by dry gel conversion. Microporous Mesoporous Mater. 2012, 147, 205–211. [Google Scholar] [CrossRef]
- Cai, R.; Sun, M.; Chen, Z.; Munoz, R.; O’Neill, C.; Beving, D.E.; Yan, Y. Ionothermal synthesis of oriented zeolite AEL films and their application as corrosion-resistant coatings. Angew. Chem. Int. Ed. 2008, 47, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Chen, X.; Sun, Q.; Sheng, N.; Liu, Y.; Bian, C.; Chen, F.; Meng, X.; Xiao, F.S. Solvent-Free Syntheses of Hierarchically Porous Aluminophosphate-Based Zeolites with AEL and AFI Structures. Chem. A Eur. J. 2014, 20, 17616–17623. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Wu, Q.; Yang, C.; Zhu, L.; Li, C.; Zhang, P.; Zhang, H.; Meng, X.; Xiao, F.-S. Solvent-free synthesis of zeolites from solid raw materials. J. Am. Chem. Soc. 2012, 134, 15173–15176. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Yan, W. The structure-directing role of heterologous seeds in the synthesis of zeolite. Green Energy Environ. 2023. [Google Scholar] [CrossRef]
- Ren, B.; Wang, J.; Zhou, Z.; Du, P.; Zhang, X. Regulation of the composition of metakaolin-based geopolymer: Effect of zeolite crystal seeds. Case Stud. Constr. Mater. 2023, 19, e02421. [Google Scholar] [CrossRef]
- Kadja, G.T.; Azhari, N.J.; Mukti, R.R.; Khalil, M. A mechanistic investigation of sustainable solvent-free, seed-directed synthesis of ZSM-5 zeolites in the absence of an organic structure-directing agent. ACS Omega 2020, 6, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Shestakova, D.O.; Babina, K.A.; Sladkovskiy, D.A.; Parkhomchuk, E.V. Seed-assisted synthesis of hierarchical zeolite ZSM-5 in the absence of organic templates. Mater. Chem. Phys. 2022, 288, 126432. [Google Scholar] [CrossRef]
- Bu, L.; Wang, Y.; Liu, W.; Chu, K.; Guo, N.; Huang, Y.; Qu, L.; Su, X.; Zhang, X.; Li, Y. Green synthesis of shaped nano-ZSM-5 toward more efficient methanol-to-hydrocarbon conversion. Appl. Catal. A Gen. 2023, 665, 119393. [Google Scholar] [CrossRef]
- Nguyen, D.-K.; Dinh, V.-P.; Dang, N.; Khan, D.T.; Hung, N.T.; Tran, N.H.T. Effects of aging and hydrothermal treatment on the crystallization of ZSM-5 zeolite synthesis from bentonite. RSC Adv. 2023, 13, 20565–20574. [Google Scholar] [CrossRef]
- Han, S.; Liu, Y.; Yin, C.; Jiang, N. Fast synthesis of submicron ZSM-5 zeolite from leached illite clay using a seed-assisted method. Microporous Mesoporous Mater. 2019, 275, 223–228. [Google Scholar] [CrossRef]
- Jain, R.; Rimer, J.D. Seed-Assisted zeolite synthesis: The impact of seeding conditions and interzeolite transformations on crystal structure and morphology. Microporous Mesoporous Mater. 2020, 300, 110174. [Google Scholar] [CrossRef]
- Chawla, A.; Jain, R.; Linares, N.; Martínez, J.G.; Rimer, J.D. Synthesis of Hierarchical Zeolite ZSM-11 Catalysts Via a Novel Organic-Free Route. In Proceedings of the 2019 North American Catalysis Society Meeting, Chicago, IL, USA, 23–28 June 2019. [Google Scholar]
- Zhu, D.; Wang, L.; Cui, W.; Tan, J.; Tian, P.; Liu, Z. High-silica zeolite Y: Seed-assisted synthesis, characterization and catalytic properties. Inorg. Chem. Front. 2022, 9, 2213–2220. [Google Scholar] [CrossRef]
- Velaga, B.; Peela, N.R. Seed-assisted and OSDA-free synthesis of H-mordenite zeolites for efficient production of 5-hydroxymethylfurfural from glucose. Microporous Mesoporous Mater. 2019, 279, 211–219. [Google Scholar] [CrossRef]
- Deng, X.; Zhou, P.; Yan, X.; Xiong, R.; Kou, H.; Luo, W. Green synthesis of low-silica CHA zeolite without organic structural directing agents, fluoride media and seeds. Microporous Mesoporous Mater. 2021, 310, 110618. [Google Scholar] [CrossRef]
- Meng, J.; Li, C.; Chen, X.; Song, C.; Liang, C. Seed-assisted synthesis of ZSM-48 zeolite with low SiO2/Al2O3 ratio for n-hexadecane hydroisomerization. Microporous Mesoporous Mater. 2020, 309, 110565. [Google Scholar] [CrossRef]
- Kamimura, Y.; Iyoki, K.; Elangovan, S.P.; Itabashi, K.; Shimojima, A.; Okubo, T. OSDA-free synthesis of MTW-type zeolite from sodium aluminosilicate gels with zeolite beta seeds. Microporous Mesoporous Mater. 2012, 163, 282–290. [Google Scholar] [CrossRef]
- Kamimura, Y.; Itabashi, K.; Okubo, T. Seed-assisted, OSDA-free synthesis of MTW-type zeolite and “Green MTW” from sodium aluminosilicate gel systems. Microporous Mesoporous Mater. 2012, 147, 149–156. [Google Scholar] [CrossRef]
- Muraza, O.; Abdul-lateef, A.; Tago, T.; Nandiyanto, A.B.; Konno, H.; Nakasaka, Y.; Yamani, Z.H.; Masuda, T. Microwave-assisted hydrothermal synthesis of submicron ZSM-22 zeolites and their applications in light olefin production. Microporous Mesoporous Mater. 2015, 206, 136–143. [Google Scholar] [CrossRef]
- Sadeghpour, P.; Haghighi, M.; Ebrahimi, A. Ultrasound-assisted rapid hydrothermal design of efficient nanostructured MFI-Type aluminosilicate catalyst for methanol to propylene reaction. Ultrason. Sonochem. 2021, 72, 105416. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Mendoza, H.; Valdez Lancinha Pereira, M.; Van Gerven, T.; Lutz, C.; Julian, I. Ultrasound-assisted preparation of Mo/ZSM-5 zeolite catalyst for non-oxidative methane dehydroaromatization. Catalysts 2021, 11, 313. [Google Scholar] [CrossRef]
- Wang, B.; Wu, J.; Yuan, Z.-Y.; Li, N.; Xiang, S. Synthesis of MCM-22 zeolite by an ultrasonic-assisted aging procedure. Ultrason. Sonochem. 2008, 15, 334–338. [Google Scholar] [CrossRef]
- Kumar, N.; Masloboischikova, O.; Kustov, L.; Heikkilä, T.; Salmi, T.; Murzin, D.Y. Synthesis of Pt modified ZSM-5 and beta zeolite catalysts: Influence of ultrasonic irradiation and preparation methods on physico-chemical and catalytic properties in pentane isomerization. Ultrason. Sonochem. 2007, 14, 122–130. [Google Scholar] [CrossRef]
- Palanisamy, S.; Palanisamy, D.; Gul, M.; Kandasamy, K.; Gevert, B.S. Hydro-treating and Hydro-isomerisation of Sunflower Oil using Pt/SAPO-11: Influence of Templates in Ultrasonic Assisted with Hydrothermal Synthesis. Bull. Chem. React. Eng. Catal. 2021, 16, 120–135. [Google Scholar] [CrossRef]
Isomer | Chemical Structure | Boiling Point a, °C | Flash Point a, °C | Melting Point a, °C | Cetane Number |
---|---|---|---|---|---|
Mono-isomers 2-methylpentadecane | 282.0 | 95.3 | −9.2 | 100 | |
8-methylpentadecane | 274.3 | 94.0 | −25.6 | 75 | |
5-butyldodecane | 150.7 b | N/A | −47.4 | 45 | |
Di-isomers | 248.0 | N/A | −37.0 | ||
(3R,4R)-dimethyltetradecane | 61 | ||||
(3R,4S)-dimethyltetradecane | 64 | ||||
(3S,4R)-dimethyltetradecane | 58 | ||||
(3S,4S)-dimethyltetradecane | 62 | ||||
(5R,6R)-dimethyltetradecane | N/A | N/A | N/A | 51 | |
(5R,6S)-dimethyltetradecane | 51 | ||||
(5S,6R)-dimethyltetradecane | 48 | ||||
(5S,6S)-dimethyltetradecane | 52 | ||||
7,8-dimethyltetradecane | 270.0 | −86.2 | −86.2 | 40 | |
Multi-branched isomers 2,2,4,4,6,8,8-heptamethylnonane | 247.0 | 102.0 | N/A | 15 |
Hydrocarbons | Thermal Cracking Products | Catalytic Cracking Products |
---|---|---|
n-Hexadecane | Primary products—alkanes C1-C3; significant quantity of n-olefins C4-C15; relatively low concentrations of branched aliphatics | Primary products—alkanes C3-C6; minor amounts of n-olefins; high concentrations of branched aliphatics |
Aliphatics | Minor conversion to aromatics at 500 °C | Large conversion to aromatics at 500 °C |
n-olefins | Slow sigmatropic rearrangement of double bond with a low isomerization | Rapid sigmatropic rearrangement of double bond with a significant isomerization conversion |
Branched olefins | Non-selective hydrogen transfer and lower rate of cracking as compared to that of the corresponding alkanes | Selective hydrogen transfer and higher rate of cracking than that of the corresponding alkanes |
Naphthenes | The rate of cracking is lower than that of the corresponding alkanes. | The rate of cracking is comparable to that of the corresponding alkanes. |
Alkyl aromatics | Cracking happens within the side of alkyl functional groups | Cracking happens within the side of aromatic ring itself |
Alkyl aromatics with larger functional groups | The rate of cracking is lower than that of the corresponding alkanes | The rate of cracking is higher than that of the corresponding alkanes |
Generation | Catalysts Composition | Operating Temperature, °C | Advantages | Disadvantages |
---|---|---|---|---|
1st | Friedel-Crafts, AlCl3 | 80–100 | High activity | Sensitivity to trace water; fast deactivation |
2nd | Metal/support | 350–500 | Easy to apply; corrosion issues are mitigated; sensitivity problems are less severe | Thermodynamic limitations on conversion |
3rd | Metal/halogenated support | 120–160 | Enhanced acidity due to halogenation (Cl, F) of alumina support | Sensitive to impurities; continuous feeding chlorine to maintain catalyst activity; corrosion of equipment |
4th | Bifunctional zeolite-based catalysts | 250–340 | Easy to use; tolerant to poisons; no feedstock pretreatment | Selectivity issues; more expensive to produce |
Zeolite | Topology | Member Ring (MR) | Channel Dimensionality | Accessible Volume, % |
---|---|---|---|---|
ZSM-5 | MFI | 10, 6, 5, 4 | 3D | 9.81 |
ZSM-12 | MTW | 12, 6, 5, 4 | 1D | 9.42 |
ZSM-22 | TON | 10, 6, 5 | 1D | 8.04 |
ZSM-23 | MTT | 10, 6, 5 | 1D | 7.98 |
ZSM-35 | FER | 10, 8, 6, 5 | 2D | 10.01 |
ZSM-48 | MRE | 10, 6, 5, 4 | 1D | 6.55 |
SAPO-11 | AEL | 10, 6, 4 | 1D | 6.77 |
Beta | BEA | 12, 6, 5, 4 | 3D | 20.52 |
Mordenite | MOR | 12, 8, 5, 4 | 2D | 12.27 |
EMM-23 | EWT | 21, 10, 6, 5, 4 | 3D | 21.95 |
Zeolite Support Type | OSDAs | Si/Al | Specific Area a, m2·g−1 | Total Pore Volume b, cm3·g−1 | Total Acidity c, µmol/g | Ref. |
---|---|---|---|---|---|---|
ZSM-5 | Tetrapropylammonium hydroxide | 32 | 371 | 0.232 | 238 | [58] |
ZSM-12 | Tetraethylammonium bromide (TEABr) | 45 60 90 120 | 310 270 220 260 | N/A | 195 92 80 54 | [59] |
ZSM-12 | Methyltriethylammonium chloride (MTEACl) | 25 | 280 | N/A | 720 | [60] |
40 | 293 | 530 | ||||
50 | 287 | 430 | ||||
75 | 314 | 300 | ||||
100 | 323 | 270 | ||||
ZSM-12 | 45 | 301 | 0.160 | 601 | [61] | |
ZSM-12 | Tetraethylammonium hydroxide (TEAOH) | 40 | 323 | N/A | N/A | [62] |
50 | 331 | |||||
71 | 300 | |||||
100 | 291 | |||||
ZSM-12 | Benzyltrimethylammonium chlorid (BTMACl) TEABr Methyltriethylammonium bromide (MTEABr) | ~90 | 260 220 260 | N/A | 107 80 115 | [63] |
ZSM-12 | TEAOH MTEACl | 61 94 | 258 380 | 0.120 0.230 | N/A | [64] |
ZSM-12 | P-Phenylenedimethylene-bis(N-methylpyrrolidinium) dibromide P-Phenylenedimethylene-bis(N-methylpiperidinium) dibromide | 20 50 | 297 306 | 0.370 0.340 | 898 550 | [65] |
ZSM-22 | 1,6-diaminohexane (+Organosilane) (+Silanized silica beads) | 76 72 72 | 258 257 251 | 0.210 0.190 0.230 | N/A | [66] |
ZSM-22 | 1,6-diaminohexane (with acid treatment) | 46 | 229 | 0.320 | N/A | [67] |
ZSM-22 | 1,6-diaminohexane | 40 60 100 | 240 255 244 | N/A | 192 145 95 | [68] |
ZSM-22 | 6-amino-1-hexanol | 35 50 100 150 | 110 137 134 144 | 0.210 0.190 0.140 0.120 | 150.2 121.7 83.2 59.1 | [69] |
ZSM-23 | N,N-dimethylformamide | 40 | 150 | N/A | N/A | [70,71] |
ZSM-23 | Pyrrolidine (PY) | 100 150 | 305 228 | 0.280 0.230 | 68 * 52 * | [72] |
ZSM-23 | Isopropylamine (IPA) | 200 | 206 | 0.260 | 49 * | |
ZSM-23 | Dual-OSDA (PY + IPA) | 100 150 200 | 278 282 251 | 0.190 0.200 0.200 | 22 * 19 * 17 * | |
EU-1 | Hexamethonium bromide | 25 | 325 | 0.160 | 847 | [61,73] |
IM-5 | 1,5-bis(methylpyrrolidinium)- pentane bromide | 33 | 338 | 0.257 | 289 | [58] |
IM-5 (micro- pores) | 21 | 381 | 0.412 | 252 | ||
SAPO-11 | Dipropylamine phosphate (DPA.H3PO4) | 0.24 | 209 | 0.134 | 245.3 | [74] |
SAPO-31 | Di-n-butylamine | 0.6 | 222 | 0.144 | 57.9 | [75] |
BETA | (TEAOH) | 20 30 40 50 | 648 614 591 553 | 0.341 0.314 0.277 0.271 | 850 830 580 490 | [76,77] |
Bifunctional Catalyst | Metal Loading, % | Precursor | Si/Al | Conversion, % | Selectivity to i-C16, % | Ref. |
---|---|---|---|---|---|---|
Pt/ZSM-12 | 0.50 | [Pt(NH3)4](OH)2 | 45 60 90 120 | 88 88 86 85 | 86 87 87 92 | [59] |
Pt/ZSM-12 | 0.50 | 90 | 82 | 87 | [63] | |
Pt/ZSM-22 | 0.50 | Pt(NO3)2 H2PtCl6 Pt(NH3)4Cl2 | 100 | 33 32 30 | 52 72 45 | [88] |
Pt/ZSM-22 (Pt nanocrystals) Octahedral Spherical Cubes | 0.50 | H2PtCl6 | 100 | 30 35 32 | 71 56 53 | [92] |
Pt/ZSM-22 | 0.46 | [Pt(NH3)4](NO3)2 | N/A | 60 | 85 | [93] |
Pt/BETA | 0.70 | 26 | 76 | |||
Pt/SAPO-11 | 0.90 | 90 | 75 | |||
Pt/SBA-15 + BETA | 0.50 | H2PtCl6 [Pt(NH3)4](NO3)2 Pt(NH3)4Cl2 | SBA(7) BETA(75) | 80 80 80 | 70 85 60 | [94] |
Pt/Fe/ZSM-23 | 0.98:0.98 1.00:1.90 0.99:3.66 1.03:7.00 | H2PtCl6 Fe(NO3)·9H2O | 50 | 57 70 64 62 | 80 82 65 64 | [95] |
Pt/ZSM-22/ZSM-23 (40:60) | 0.50 | H2PtCl6 | 100 | 58 | 78 | [96] |
Ni/ZSM-48 | N/A | Ni(NO3)2·6H2O | 200 | 60 | 50 | [97,98] |
Pt/SAPO-11 | 0.50 | H2PtCl6 | 0.24 | 96 | 58 | [74] |
Pd-Ni2P/SAPO-31 | 0.05 Pd 4.00 Ni2P | Pd(NO3)2 (NH4)2HPO4 + Ni(NO3)2 | 0.6 | 83 | 72 | [75] |
Pt/(SAPO-11/Al2O3) SAPO-11:Al2O3 = 0.43 0.67 1.00 | 1.00 | H2PtCl6 | 0.015 0.020 0.025 | 50 56 57 | 99 99 99 | [99] |
Bifunctional Catalyst | Active Metal Loading, % | Si/Al | Optimal Conditions | Conversion, % | Selectivity, % | Ref. | |||
---|---|---|---|---|---|---|---|---|---|
T, °C | P, MPa | WHSV, h−1 | H2/n-C16 | ||||||
Pd/ZSM-5 | 1.00 | 40 | 280 | 6.0 | 10.0 | 20 | 95 | 4 | [57] |
Pd/ZSM-5 a | 1.00 | 61 | 290 | 58 | 16 | ||||
Pt/ZSM-5 | 0.50 | 32 | 240 | 2.0 | 6.0 | 10 | 33 | 4 | [58] |
Pt/ZSM-12 | 0.50 | 90 | 310 | 6.0 | 1.1 | 10 | 86 | 87 | [63] |
Pd/ZSM-12 | 1.00 | 62 | 310 | 6.0 | 10.0 | 20 | 85 | 92 | [57] |
Pt/ZSM-22 | 0.46 | N/A | 320 | 4.0 | N/A | N/A | 80 | 85 | [93] |
Pd/ZSM-22 | 1.00 | 61 | 330 | 6.0 | 10.0 | 20 | 85 | 56 | [57] |
Pt/ZSM-22 | 0.45 | 45 | 305 | 6.0 | 0.7 | 10 | 94 | 76 | [120] |
Pt/Ca-ZSM-22 | 0.42 | 312 | 91 | 82 | |||||
Pt/Ba-ZSM-22 | 0.44 | 312 | 1.1 | 90 | 86 | ||||
Pt/ZSM-22 | 0.90 | 100 | 300 | 4.0 | N/A | 600 | 15 | 33 | [81] |
Pt/ZSM-23 | 0.91 | 290 | 70 | 80 | |||||
Pt/ZSM-23 | 0.60 | 60 | 270 | 3.0 | 1.0 | 6 | 91 | 82 | [117] |
Pt/ZSM-23 | 0.50 | 58 | 290 | 3.0 | 2.0 | 1000 | 85 | 85 | [121] |
Pd/EMM-23 | 1.00 | 60 | 290 | 6.0 | 10 | 20 | 80 | 13 | [57] |
Pt/ZSM-35 | 0.95 | 40 | 300 | 4.0 | N/A | 600 | 92 | 48 | [80] |
Pt/ZSM-48 | 0.93 | 200 | 20 | 54 | |||||
Pt/EU-1/ZSM-48 | 0.97 | 200 | 300 | 4.0 | N/A | 600 | 80 | 55 | [122] |
Pt/SAPO-11 b | 0.15 | 0.6 | 310 | 2.0 | 3.1 | 650 | 94 | 96 | [123] |
Pt/SAPO-11 | 0.90 | N/A | 350 | 4.0 | N/A | N/A | 90 | 75 | [93] |
Pd/SAPO-31 | 0.15 | 0.3 | 340 | 2.0 | 3.7 | 500 | 90 | 90 | [124] |
Pd/SAPO-41 | 0.80 | 8 | 90 | 96 | [125] | ||||
Pt-Pd/SAPO-41 | 0.15:0.35 | 96 | 94 | [126] | |||||
Pd/SAPO-41 | 0.10 | 0.3 | 360 | 2.0 | 3.7 | 500 | 87 | 95 | [127] |
Pd-Ni2P/SAPO-31 | 0.05/4.00 | 0.3 | 380 | 2.0 | 3.7 | 500 | 85 | 87 | [75] |
Pt/IM-5 | 0.50 | 33 | 240 | 2.0 | 6.0 | 10 | 43 | 5 | [58] |
Pt/BETA | 0.40 | 14 | 200 | 0.5 | 3.0 | 13 | 50 | 63 | [128] |
Pt/BETA | 0.79 | - | 280 | 4.0 | N/A | N/A | 50 | 70 | [93] |
Pt-Pd/BETA | 0.40/0.40 | 25 | 200 | 0.1 | 3.0 | 750 | 78 | 93 | [129] |
CoMo/Al2O3-Y | 3.50–13.00 | 2.5 | 360 | 1.5 | 1.0 | 150 | 11 | 55 | [130] |
Pt/BETA | 1.00 | 14 | 200 | 0.5 | 3.0 | 13 | 50 | 68 | [117] |
Pt/USY | 0.70 | 17 | 215 | 61 | |||||
Pt/USY+ Pt/BETA | 0.70/1.00 | 14/17 | 205 | 65 | |||||
Pt/Al-SBA-15 + BETA | 0.50 | 75 | 300 | 5.0 | 3.5 | 5 | 84 | 71 | [131] |
Pt/Al-SBA-15 + MOR | 45 | 43 | 81 |
Approach | Principle | Influencing Factors | Advantages | Disadvantages |
---|---|---|---|---|
Solvothermal method | Using solvents | Temperature, pressure, reactants sources and compositions, Si/Al, aging time, alkalinity, stirring conditions, seeding, solvents type | Simple; cheaper | Environmentally harmful; energetic and time-consuming approach |
Alkali-fusion method | Fussing raw materials with alkali before hydrothermal treatment | Si/Al, concentration of the alkali medium, temperature of crystallization | Using low-grade raw materials without purification; offers the zeolite with high purity | High energy consumption; expensive; multistep; time-consuming |
Sol-gel method | Formation of an inorganic sol and its gelation in liquid phase gel to form a 3D structure | Hydrolysis rate, temperature, heating rate, PH | High-quality product; homogeneity; does not require expensive equipment | Cost of precursors |
Microwave method | Using microwave irradiation | Si/Al ratios, alkalinity, wavelength, temperature, crystallization time | Concise time; high purity product; small particle size | Low crystal aspect ratio |
Ultra-sound method | Using ultrasound with frequency 20 kHz–2 MHz | Duration and frequency of ultrasonication | Very simple; rapid reaction; high crystals growth rate; suitable particle size distribution and morphology; control on nucleation process | The mechanism of ultrasonic effect remains unclear |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljajan, Y.; Stytsenko, V.; Rubtsova, M.; Glotov, A. Hydroisomerization Catalysts for High-Quality Diesel Fuel Production. Catalysts 2023, 13, 1363. https://doi.org/10.3390/catal13101363
Aljajan Y, Stytsenko V, Rubtsova M, Glotov A. Hydroisomerization Catalysts for High-Quality Diesel Fuel Production. Catalysts. 2023; 13(10):1363. https://doi.org/10.3390/catal13101363
Chicago/Turabian StyleAljajan, Yamen, Valentin Stytsenko, Maria Rubtsova, and Aleksandr Glotov. 2023. "Hydroisomerization Catalysts for High-Quality Diesel Fuel Production" Catalysts 13, no. 10: 1363. https://doi.org/10.3390/catal13101363