Fabrication and Photocatalytic Activity of Single Crystalline TiO2 Hierarchically Structured Microspheres
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structures and Morphology
2.2. BET Analysis
2.3. Growth Mechanism
2.4. Photocatalytic Activity Evaluation
3. Materials and Methods
3.1. Synthesis of Materials
3.2. Characterization of Materials
3.3. Photocatalytic Activity Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, T.; Zhang, H. Novel Fe-doped anatase TiO2 nanosheet hierarchical spheres with 94%{001} facets for efficient visible light photodegradation of organic dye. RSC Adv. 2013, 3, 16255–16258. [Google Scholar] [CrossRef]
- Ji, L.; Liu, X.; Xu, T.; Gong, M.; Zhou, S. Preparation and photocatalytic properties of carbon/carbon-doped TiO2 double-layer hollow microspheres. J. Sol-Gel Sci. Technol. 2020, 93, 380–390. [Google Scholar] [CrossRef]
- Xie, J.; Jiang, D.; Chen, M.; Li, D.; Zhu, J.; Lü, X.; Yan, C. Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity. Colloids Surf. A Physicochem. Eng. Asp. 2010, 372, 107–114. [Google Scholar] [CrossRef]
- Akple, M.S.; Low, J.; Qin, Z.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J.; Liu, S. Nitrogen-doped TiO2 microsheets with enhanced visible light photocatalytic activity for CO2 reduction. Chin. J. Catal. 2015, 36, 2127–2134. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Qu, J.; Chen, Y.; Shao, Z. Nitrogen-doped TiO2 microspheres with hierarchical micro/nanostructures and rich dual-phase junctions for enhanced photocatalytic activity. RSC Adv. 2016, 6, 40923–40931. [Google Scholar] [CrossRef]
- Park, B.-G. Photocatalytic Activity of TiO2-Doped Fe, Ag, and Ni with N under Visible Light Irradiation. Gels 2021, 8, 14. [Google Scholar] [CrossRef]
- Wang, A.; Wu, S.; Dong, J.; Wang, R.; Wang, J.; Zhang, J.; Zhong, S.; Bai, S. Interfacial facet engineering on the Schottky barrier between plasmonic Au and TiO2 in boosting the photocatalytic CO2 reduction under ultraviolet and visible light irradiation. Chem. Eng. J. 2021, 404, 127145. [Google Scholar] [CrossRef]
- Wanbayor, R.; Ruangpornvisuti, V. A periodic DFT study on binding of Pd, Pt and Au on the anatase TiO2 (0 0 1) surface and adsorption of CO on the TiO2 surface-supported Pd, Pt and Au. Appl. Surf. Sci. 2012, 258, 3298–3301. [Google Scholar] [CrossRef]
- Meng, A.; Zhang, J.; Xu, D.; Cheng, B.; Yu, J. Enhanced photocatalytic H2-production activity of anatase TiO2 nanosheet by selectively depositing dual-cocatalysts on {101} and {001} facets. Appl. Catal. B Environ. 2016, 198, 286–294. [Google Scholar] [CrossRef]
- Shi, Z.; Lin, L.; Chen, R.; Yan, L. Adsorption of CO molecules on anatase TiO2(001) loaded with noble metals M (M = Ir/Pd/Pt): A study from DFT calculations. Mater. Today Commun. 2021, 28, 102699. [Google Scholar] [CrossRef]
- Tong, R.; Liu, C.; Xu, Z.; Kuang, Q.; Xie, Z.; Zheng, L. Efficiently Enhancing Visible Light Photocatalytic Activity of Faceted TiO2 Nanocrystals by Synergistic Effects of Core–Shell Structured Au@CdS Nanoparticles and Their Selective Deposition. ACS Appl. Mater. Interfaces 2016, 8, 21326–21333. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Lei, E.; Hu, C.; Zhao, D.; Zhu, M.; Wang, J.; Zhao, W. gC3N4/TiO2 composite microspheres: In situ growth and high visible light catalytic activity. CrystEngComm 2020, 22, 7104–7112. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, C.; Li, C.; Qin, F.; Wei, L.; Hu, C.; Hu, Q.; Duo, S. Nanoscaled Bi2O4 confined in firework-shaped TiO2 microspheres with enhanced visible light photocatalytic performance. Colloids Surf. A Physicochem. Eng. Asp. 2019, 580, 123757. [Google Scholar] [CrossRef]
- Wang, W.S.; Wang, D.H.; Qu, W.G.; Lu, L.Q.; Xu, A.W. Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity. J. Phys. Chem. C 2012, 116, 19893–19901. [Google Scholar] [CrossRef]
- Cheng, B.; Le, Y.; Yu, J. Preparation and enhanced photocatalytic activity of Ag@TiO2 core–shell nanocomposite nanowires. J. Hazard. Mater. 2010, 177, 971–977. [Google Scholar] [CrossRef]
- Li, G.; Chen, J.; Wu, S.; Yu, Y.; Li, Y.; Gao, J. The relationship between the mesostructure of WO3/TiO2 hollow microsphere and its property. Surf. Innov. 2017, 6, 37–46. [Google Scholar]
- Shaikh, S.F.; Kwon, H.-C.; Yang, W.; Mane, R.S.; Moon, J. Performance enhancement of mesoporous TiO2-based perovskite solar cells by ZnS ultrathin-interfacial modification layer. J. Alloys Compd. 2018, 738, 405–414. [Google Scholar] [CrossRef]
- Yang, H.G.; Sun, C.H.; Qiao, S.Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H.M.; Lu, G.Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Yang, H.G.; Pan, J.; Yang, Y.Q.; Lu, G.Q.; Cheng, H.-M. Titanium Dioxide Crystals with Tailored Facets. Chem. Rev. 2014, 114, 9559–9612. [Google Scholar] [CrossRef]
- Sun, J.; Sun, J.; Wang, X. Anatase TiO2 with Co-exposed (001) and (101) Surface-Based Photocatalytic Materials for Energy Conversion and Environmental Purification. Chem.–Asian J. 2020, 15, 4168–4183. [Google Scholar] [CrossRef]
- Li, H.; Zeng, Y.; Huang, T.; Piao, L.; Liu, M. Controlled synthesis of anatase TiO2 single crystals with dominant {001} facets from TiO2 powders. ChemPlusChem 2020, 77, 1017–1021. [Google Scholar] [CrossRef]
- Liu, M.; Piao, L.; Zhao, L.; Ju, S.; Yan, Z.; He, T.; Zhou, C.; Wang, W. Anatase TiO2 single crystals with exposed {001} and {110} facets: Facile synthesis and enhanced photocatalysis. Chem. Commun. 2010, 46, 1664–1666. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839–8842. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, D. Tetragonal faceted-nanorods of anatase TiO2 single crystals with a large percentage of active {100} facets. Chem. Commun. 2010, 46, 2301–2303. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Wu, X.; Wang, L.; Liu, G.; Lu, G.Q.M.; Cheng, H.M. Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. Chem. Commun. 2011, 47, 8361–8363. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Yu, J.; Jaroniec, M. Tunable photocatalytic selectivity of TiO2 films consisted of flower-like microspheres with exposed {001} facets. Chem. Commun. 2011, 47, 4532–4534. [Google Scholar] [CrossRef]
- Han, S.; Niu, Q.; Qin, N.; Gu, X.; Zhang, Y.N.; Hua, G. In situ growth of M-{001} TiO2/Ti photoelectrodes: Synergetic dominant {001} facets and ratio-optimal surface junctions for the effective oxidation of environmental pollutants. Chem. Commun. 2020, 56, 1337–1340. [Google Scholar] [CrossRef]
- Sayed, M.; Shah, L.A.; Khan, J.A.; Shah, N.S.; Nisar, J.; Khan, H.M.; Zhang, P.; Khan, A.R. Efficient photocatalytic degradation of norfloxacin in aqueous media by hydrothermally synthesized immobilized TiO2/Ti films with exposed {001} facets. J. Phys. Chem. A 2016, 120, 9916–9931. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, B.; Lu, J.; Qin, X.; Zhang, X.; Dai, Y. Hierarchical TiO2 microspheres: Synergetic effect of {001} and {101} facets for enhanced photocatalytic activity. Chem. Eur. J. 2011, 17, 15032–15038. [Google Scholar] [CrossRef]
- Shaikh, S.F.; Mane, R.S.; Min, B.K.; Hwang, Y.; Joo, J.O.S. D-sorbitol-induced phase control of TiO2 nano-particles and its application for dye-sensitized solar cells. Sci. Rep. 2016, 6, 20103. [Google Scholar] [CrossRef] [Green Version]
- Baes, C.F., Jr.; Mesmer, R.E. Thermodynamics of cation hydrolysis. Am. J. Sci. 1981, 281, 935–962. [Google Scholar] [CrossRef]
- Hong, H.-J.; Ban, G.; Lee, S.-M.; Park, I.-S.; Lee, Y.-J. Synthesis of 3D-structured Li4Ti5O12 from titanium(IV) oxysulfate (TiOSO4) solution as a highly sustainable anode material for lithium-ion batteries. J. Alloys Compd. 2020, 844, 156203. [Google Scholar] [CrossRef]
- Fu, X.; Fan, C.; Yu, S.; Shi, L.; Wang, Z. TiO2 mesocrystals with exposed {001} facets as efficient photocatalysts. J. Alloy Compd. 2016, 680, 80–86. [Google Scholar] [CrossRef]
- Xu, M.; Ruan, P.; Xie, H.; Yu, A.; Zhou, X. Mesoporous TiO2 Single-Crystal Polyhedron-Constructed Core–Shell Microspheres: Anisotropic Etching and Photovoltaic Property. ACS Sustain. Chem. Eng. 2014, 2, 621–628. [Google Scholar] [CrossRef]
- Xiao, J.; Li, P.; Wen, X. Alkali-corrosion synthesis and excellent DSSC performance of novel jujube-like hierarchical TiO2 microspheres. Nanotechnology 2018, 29, 175603. [Google Scholar] [CrossRef] [PubMed]
- Lazzeri, M.; Vittadini, A.; Selloni, A. Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 2001, 63, 155409. [Google Scholar] [CrossRef]
- Li, D.; Nielsen, M.H.; Lee, J.R.I.; Frandsen, C.; Banfield, J.F.; De Yoreo, J.J. Direction-Specific Interactions Control Crystal Growth by Oriented Attachment. Science 2012, 336, 1014–1018. [Google Scholar] [CrossRef]
- Wang, L.; Xie, Y.; Liu, W.; Wang, Q.; Cao, W. Synthesis of mesoporous core-shell TiO2 microstructures with coexposed {001}/{101} facets: Enhanced intrinsic photocatalytic performance. Environ. Sci. Pollut. Res. 2018, 25, 31250–31261. [Google Scholar] [CrossRef]
- Liu, G.; Yu, J.C.; Lu, G.Q.; Cheng, H.-M. Crystal facet engineering of semiconductor photocatalysts: Motivations, advances and unique properties. Chem. Commun. 2011, 47, 6763–6783. [Google Scholar] [CrossRef]
- Tachikawa, T.; Yamashita, S.; Majima, T. Evidence for Crystal-Face-Dependent TiO2 Photocatalysis from Single-Molecule Imaging and Kinetic Analysis. J. Am. Chem. Soc. 2011, 133, 7197–7204. [Google Scholar] [CrossRef]
- Cai, J.; Wang, Z.; Lv, K.; Zheng, Y.; Yu, J.; Li, M. Rapid synthesis of a TiO2 hollow microsphere assembly from hollow nanoparticles with enhanced photocatalytic activity. RSC Adv. 2013, 3, 15273–15281. [Google Scholar] [CrossRef]
- Wei, T.; Niu, B.; Zhao, G. Highly characteristic adsorption based on single crystal {001}-TiO2 surface molecular recognition promotes enhanced oxidation. ACS Appl. Mater. Interfaces 2020, 12, 39273–39281. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Kong, Q.; Yue, X.; Wang, K.; Wei, Z.; Chang, Y. Fabrication and Photocatalytic Activity of Single Crystalline TiO2 Hierarchically Structured Microspheres. Catalysts 2023, 13, 201. https://doi.org/10.3390/catal13010201
Huang H, Kong Q, Yue X, Wang K, Wei Z, Chang Y. Fabrication and Photocatalytic Activity of Single Crystalline TiO2 Hierarchically Structured Microspheres. Catalysts. 2023; 13(1):201. https://doi.org/10.3390/catal13010201
Chicago/Turabian StyleHuang, Haisheng, Qi Kong, Xin Yue, Kunlei Wang, Zhishun Wei, and Ying Chang. 2023. "Fabrication and Photocatalytic Activity of Single Crystalline TiO2 Hierarchically Structured Microspheres" Catalysts 13, no. 1: 201. https://doi.org/10.3390/catal13010201
APA StyleHuang, H., Kong, Q., Yue, X., Wang, K., Wei, Z., & Chang, Y. (2023). Fabrication and Photocatalytic Activity of Single Crystalline TiO2 Hierarchically Structured Microspheres. Catalysts, 13(1), 201. https://doi.org/10.3390/catal13010201