The High ‘Lipolytic Jump’ of Immobilized Amano A Lipase from Aspergillus niger in Developed ‘ESS Catalytic Triangles’ Containing Natural Origin Substrates
Abstract
1. Introduction
2. Results and Discussion
2.1. Effect of Substrates on the Lipolytic Activity of Immobilized AA-ANL
2.2. The Effect of the Support on AA-ANL Lipolytic Activity
2.3. The Effect of Temperature on the Lipolytic Activity of the Immobilized AA-ANL
2.4. The Effect of pH on the Lipolytic Activity of Immobilized AA-ANL
2.5. The Effect of Substrate Mixtures on the Lipolytic Activity of Immobilized AA-ANL
2.6. Reuse of Immobilized AA-ANL
2.7. Storage Stability of the Immobilized AA-ANL
2.8. Kinetic Studies
3. Materials and Methods
3.1. Materials
3.2. Immobilization of AA-ANL onto Polyacrylic Supports IB-150A, IB-D152, and IB-EC1
3.3. Determination of the Amount of Immobilized AA-ANL
3.4. Determination of the Lipolytic Activity of Immobilized AA-ANL
3.5. Effect of the Support on Lipolytic Activity of Immobilized AA-ANL
3.6. Effect of Temperature and pH on the Lipolytic Activity of Immobilized AA-ANL
3.7. Effect of Substrate Mixtures on the Lipolytic Activity of Immobilized AA-ANL
3.8. Reusability of Immobilized AA-ANL
3.9. Storage Stability of Immobilized AA-ANL
3.10. Kinetic Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tacias-Pascacio, V.G.; Ortiz, C.; Rueda, N.; Berenguer-Murcia, A.; Acosta, N.; Aranaz, I.; Civera, C.; Fernandez-Lafuente, R.; Alcantara, A.R. Dextran Aldehyde in Biocatalysis: More Than a Mere Immobilization System. Catalysts 2019, 9, 622. [Google Scholar] [CrossRef]
- Alcalde, M.; Ferrer, M.; Plou, F.J.; Ballesteros, A. Environmental biocatalysis: From remediation with enzymes to novel green processes. Trends Biotechnol. 2006, 24, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Soumanou, M.M.; Bornscheuer, U.T.; Menge, U.; Schmid, R.D. Synthesis of structured triglycerides from peanut oil with immobilized lipase. J. Am. Oil Chem. 1997, 74, 427–433. [Google Scholar] [CrossRef]
- Busch, S.; Horlacher, P.; Both, S.; Westfechtel, A.; Schorken, U. Green synthesis routes toward triglycerides of conjugated linoleic acid. Eur. J. Lipid Sci. Technol 2011, 113, 92–99. [Google Scholar] [CrossRef]
- Siódmiak, T.; Ziegler-Borowska, M.; Marszałł, M.P. Lipase-immobilized magnetic chitosan nanoparticles for kinetic resolution of (R,S)-ibuprofen. J. Mol. Catal. B Enzym. 2013, 94, 7–14. [Google Scholar] [CrossRef]
- Marszałł, M.P.; Siódmiak, T. Immobilization of Candida rugosa lipase onto magnetic beads for kinetic resolution of (R,S)- ibuprofen. Catal. Commun. 2012, 24, 80–84. [Google Scholar] [CrossRef]
- Graffner-Nordberg, M.; Sjodin, K.; Tunek, A.; Hallberg, A. Synthesis and enzymatic hydrolysis of esters, constituting simple models of soft drugs. Chem. Pharm. Bull. 1998, 46, 591–601. [Google Scholar] [CrossRef]
- Song, X.; Qi, X.Y.; Hao, B.; Qu, Y.B. Studies of substrate specificities of lipases from different sources. Eur. J. Lipid Sci. Technol. 2008, 110, 1095–1101. [Google Scholar] [CrossRef]
- Peter, F.; Preda, G. Characterisation of pancreatic lipase substrate specificity in organic reaction media by a kinetic method. J. Mol. Catal. B Enzym. 2002, 19, 467–472. [Google Scholar] [CrossRef]
- Sanchez, D.A.; Tonetto, G.M.; Ferreira, M.L. Burkholderia cepacia lipase: A versatile catalyst in synthesis reactions. Biotechnol. Bioeng. 2018, 115, 6–24. [Google Scholar] [CrossRef]
- Stauch, B.; Fisher, S.J.; Cianci, M. Open and closed states of Candida antarctica lipase B: Protonation and the mechanism of interfacial activation. J. Lipid Res. 2015, 56, 2348–2358. [Google Scholar] [CrossRef] [PubMed]
- Zisis, T.; Freddolino, P.L.; Turunen, P.; van Teeseing, M.C.F.; Rowan, A.E.; Blank, K.G. Interfacial Activation of Candida antarctica Lipase B: Combined Evidence from Experiment and Simulation. Biochemistry 2015, 54, 5969–5979. [Google Scholar] [CrossRef] [PubMed]
- Secundo, F.; Carrea, G.; Tarabiono, C.; Gatti-Lafranconi, P.; Brocca, S.; Lotti, M.; Jaeger, K.E.; Puls, M.; Eggert, T. The lid is a structural and functional determinant of lipase activity and selectivity. J. Mol. Catal. B Enzym. 2006, 39, 166–170. [Google Scholar] [CrossRef]
- Chandra, P.; Enespa; Singh, R.; Arora, P.K. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Fact. 2020, 19, 169. [Google Scholar] [CrossRef]
- Bezerra, C.S.; Lemos, C.; de Sousa, M.; Goncalves, L.R.B. Enzyme immobilization onto renewable polymeric matrixes: Past, present, and future trends. J. Appl. Polym. Sci. 2015, 132, 42125. [Google Scholar] [CrossRef]
- Siódmiak, T.; Mangelings, D.; Vander Heyden, Y.; Ziegler-Borowska, M.; Marszałł, M.P. High Enantioselective Novozym 435-Catalyzed Esterification of (R,S)-Flurbiprofen Monitored with a Chiral Stationary Phase. Appl. Biochem. Biotechnol. 2015, 175, 2769–2785. [Google Scholar] [CrossRef] [PubMed]
- Jose, C.; Toledo, M.V.; Briand, L.E. Enzymatic kinetic resolution of racemic ibuprofen: Past, present and future. Crit. Rev. Biotechnol. 2016, 36, 891–903. [Google Scholar] [CrossRef]
- Kourist, R.; de Maria, P.D.; Miyamoto, K. Biocatalytic strategies for the asymmetric synthesis of profens—recent trends and developments. Green Chem. 2011, 13, 2607–2618. [Google Scholar] [CrossRef]
- Carvalho, A.; Fonseca, T.D.; de Mattos, M.C.; de Oliveira, M.D.F.; de Lemos, T.L.G.; Molinari, F.; Romano, D.; Serra, I. Recent Advances in Lipase-Mediated Preparation of Pharmaceuticals and Their Intermediates. Int. J. Mol. Sci. 2015, 16, 29682–29716. [Google Scholar] [CrossRef]
- Rios, N.S.; Neto, D.M.A.; dos Santos, J.C.S.; Fechine, P.B.A.; Fernandez-Lafuente, R.; Goncalves, L.R.B. Comparison of the immobilization of lipase from Pseudomonas fluorescens on divinylsulfone or p-benzoquinone activated support. Int. J. Biol. Macromol. 2019, 134, 936–945. [Google Scholar] [CrossRef] [PubMed]
- Zdarta, J.; Sałek, K.; Kołodziejczak-Radzimska, A.; Siwińska-Stefańska, K.; Szwarc-Rzepka, K.; Norman, M.; Klapiszewski, Ł.; Bartczak, P.; Kaczorek, E.; Jesionowski, T. Immobilization of Amano Lipase A onto Stober silica surface: Process characterization and kinetic studies. Open Chem. 2015, 13, 138–148. [Google Scholar] [CrossRef]
- Le, Z.G.; Guo, L.T.; Jiang, G.F.; Yang, X.B.; Liu, H.Q. Henry reaction catalyzed by Lipase A from Aspergillus niger. Green Chem. Lett. Rev. 2013, 6, 277–281. [Google Scholar] [CrossRef]
- Yildiz, T. An Enzymatic and Environmentally Friendly Route for the Synthesis of Chiral beta-Hydroxy Ketones. ChemistrySelect 2019, 4, 7927–7931. [Google Scholar] [CrossRef]
- Yildiz, T.; Yasa, H.; Hasdemir, B.; Yusufoglu, A.S. Different bio/Lewis acid-catalyzed stereoselective aldol reactions in various mediums. Monatsh. Chem. 2017, 148, 1445–1452. [Google Scholar] [CrossRef]
- Dunne, A.; Palomo, J.M. Efficient and green approach for the complete deprotection of O-acetylated biomolecules. RSC Adv. 2016, 6, 88974–88978. [Google Scholar] [CrossRef]
- Xu, L.; Ke, C.X.; Huang, Y.; Yan, Y.J. Immobilized Aspergillus niger Lipase with SiO2 Nanoparticles in Sol-Gel Materials. Catalysts 2016, 6, 149. [Google Scholar] [CrossRef]
- Feng, K.L.; Huang, Z.C.; Peng, B.; Dai, W.J.; Li, Y.Q.; Zhu, X.A.; Chen, Y.J.; Tong, X.; Lan, Y.Q.; Cao, Y. Immobilization of Aspergillus niger lipase onto a novel macroporous acrylic resin: Stable and recyclable biocatalysis for deacidification of high-acid soy sauce residue oil. Bioresour. Technol. 2020, 298, 122553. [Google Scholar] [CrossRef]
- Contesini, F.J.; Calzado, F.; Madeira, J.V.; Rubio, M.V.; Zubieta, M.P.; de Melo, R.R.; Goncalves, T.A. Aspergillus Lipases: Biotechnological and Industrial Application. Fungal Metab. 2017, 639–666. [Google Scholar] [CrossRef]
- Silva, W.S.D.; Lapis, A.A.M.; Suarez, P.A.Z.; Neto, B.A.D. Enzyme-mediated epoxidation of methyl oleate supported by imidazolium-based ionic liquids. J. Mol. Catal. B Enzym. 2011, 68, 98–103. [Google Scholar] [CrossRef]
- Carvalho, P.D.; Contesini, F.J.; Ikegaki, M. Enzymatic resolution of (R,S)-ibuprofen and (R,S)-ketoprofen by microbial lipases from native and commercial sources. Braz. J. Microbiol. 2006, 37, 329–337. [Google Scholar] [CrossRef]
- El-Ghonemy, D.H.; Ali, T.H.; Hassanein, N.M.; Abdellah, E.M.; Fadel, M.; Awad, G.E.A.; Abdou, D.A.M. Thermo-alkali-stable lipase from a novel Aspergillus niger: Statistical optimization, enzyme purification, immobilization and its application in biodiesel production. Prep. Biochem. Biotechnol. 2021, 51, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Cong, S.Z.; Tian, K.M.; Zhang, X.; Lu, F.P.; Singh, S.; Prior, B.; Wang, Z.X. Synthesis of flavor esters by a novel lipase from Aspergillus niger in a soybean-solvent system. 3 Biotech 2019, 9, 244. [Google Scholar] [CrossRef] [PubMed]
- Pera, L.M.; Romero, C.M.; Baigori, M.D.; Castro, G.R. Catalytic properties of lipase extracts from Aspergillus niger. Food Technol. Biotechnol. 2006, 44, 247–252. [Google Scholar]
- Qiao, H.Z.; Zhang, F.; Guan, W.T.; Zuo, J.J.; Feng, D.Y. Optimisation of combi-lipases from Aspergillus niger for the synergistic and efficient hydrolysis of soybean oil. J. Anim. Sci. 2017, 88, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Kuboki, A.; Ishihara, T.; Kobayashi, E.; Ohta, H.; Ishii, T.; Inoue, A.; Mitsuda, S.; Miyazaki, T.; Kajihara, Y.; Sugai, T. Synthesis of regioselectively protected forms of cytidine based on enzyme-catalyzed deacetylation as the key step. Biosci. Biotechnol. Biochem. 2000, 64, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Silano, V.; Baviera, J.M.B.; Bolognesi, C.; Bruschweiler, B.J.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; Lampi, E.; Mortensen, A.; et al. Enzyme, Safety evaluation of the food enzyme triacylglycerol lipase from Aspergillus niger (strain LFS). Efsa J. 2019, 17, e05630. [Google Scholar] [PubMed]
- Carvalho, P.D.; Contesini, F.J.; Bizaco, R.; Calafatti, S.A.; Macedo, G.A. Optimization of enantioselective resolution of racemic ibuprofen by native lipase from Aspergillus niger. J. Ind. Microbiol. Biotechnol. 2006, 33, 713–718. [Google Scholar] [CrossRef]
- Thangaraj, B.; Solomon, P.R. Immobilization of Lipases—A Review. Part I: Enzyme Immobilization. ChemBioEng Rev. 2019, 6, 157–166. [Google Scholar] [CrossRef]
- Thangaraj, B.; Solomon, P.R. Immobilization of Lipases—A Review. Part II: Carrier Materials. ChemBioEng Rev. 2019, 6, 167–194. [Google Scholar] [CrossRef]
- Mokhtar, N.F.; Rahman, R.A.; Noor, N.D.M.; Shariff, F.M.; Ali, M.S.M. The Immobilization of Lipases on Porous Support by Adsorption and Hydrophobic Interaction Method. Catalysts 2020, 10, 744. [Google Scholar] [CrossRef]
- Boudrant, J.; Woodley, J.M.; Fernandez-Lafuente, R. Parameters necessary to define an immobilized enzyme preparation. Process Biochem. 2020, 90, 66–80. [Google Scholar] [CrossRef]
- Garcia-Galan, C.; Berenguer-Murcia, A.; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Adv. Synth. Catal. 2011, 353, 2885–2904. [Google Scholar] [CrossRef]
- Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym. Microb. Technol. 2007, 40, 1451–1463. [Google Scholar] [CrossRef]
- Poppe, J.K.; Costa, A.P.O.; Brasil, M.C.; Rodrigues, R.C.; Ayub, M.A.Z. Multipoint covalent immobilization of lipases on aldehyde-activated support: Characterization and application in transesterification reaction. J. Mol. Catal. B Enzym. 2013, 94, 57–62. [Google Scholar] [CrossRef]
- Zucca, P.; Sanjust, E. Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms. Molecules 2014, 19, 14139–14194. [Google Scholar] [CrossRef]
- Siódmiak, T.; Haraldsson, G.G.; Dulęba, J.; Ziegler-Borowska, M.; Siódmiak, J.; Marszałł, M.P. Evaluation of Designed Immobilized Catalytic Systems: Activity Enhancement of Lipase B from Candida antarctica. Catalysts 2020, 10, 876. [Google Scholar] [CrossRef]
- Alagoz, D.; Celik, A.; Yildirim, D.; Tukel, S.S.; Binay, B. Covalent immobilization of Candida methylica formate dehydrogenase on short spacer arm aldehyde group containing supports. J. Mol. Catal. B Enzym. 2016, 130, 40–47. [Google Scholar] [CrossRef]
- Matte, C.R.; Bussamara, R.; Dupont, J.; Rodrigues, R.C.; Hertz, P.F.; Ayub, M.A.Z. Immobilization of Thermomyces lanuginosus Lipase by Different Techniques on Immobead 150 Support: Characterization and Applications. Appl. Biochem. Biotechnol. 2014, 172, 2507–2520. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, S.; Yousefi, M.; Nikseresht, A.; Omidi, H. Covalent binding and in-situ immobilization of lipases on a flexible nanoporous material. Process Biochem. 2021, 102, 92–101. [Google Scholar] [CrossRef]
- Elgharbawy, A.A.; Hayyan, A.; Hayyan, M.; Rashid, S.N.; Nor, M.R.M.; Zulkifli, M.Y.; Alias, Y.; Mirghani, M.E.S. Shedding Light on Lipase Stability in Natural Deep Eutectic Solvents. Chem. Biochem. Eng. Q. 2018, 32, 359–370. [Google Scholar] [CrossRef]
- Sharma, A.; Bhandari, K.; Jain, A.; Chaurasia, S.P.; Dalai, A.K. Lipase catalyzed esterification of Docosahexaenoic acid (DHA) with immobilized Pseudomonas cepacia and Thermomyces lanuginosus. Indian J. Chem. Technol. 2021, 28, 139–149. [Google Scholar]
- Diwan, B.; Gupta, P. Synthesis of MCFA and PUFA rich oils by enzymatic structuring of flax oil with single cell oils. LWT 2020, 133, 109928. [Google Scholar] [CrossRef]
- Hebda, P.; Wiśniowska, L.; Szafrański, P.W.; Cegła, M. Multigram-scale enzymatic kinetic resolution of trans-2-azidocyclohexyl acetate and chiral reversed-phase HPLC analysis of trans-2-azidocyclohexanol. Chirality 2022, 34, 428–437. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.L.L.; Assuncao, J.C.D.; Pascoal, C.V.P.; Bezerra, M.L.S.; Silva, A.C.S.; de Souza, B.V.; Rodrigues, F.E.A.; Ricardo, N.; Arruda, T. Waste of Nile Tilapia (Oreochromis niloticus) to Biodiesel Production by Enzymatic Catalysis.Optimization Using Factorial Experimental Design. Ind. Eng. Chem. Res. 2021, 60, 3554–3560. [Google Scholar] [CrossRef]
- Sanchez, D.A.; Alnoch, R.C.; Tonetto, G.M.; Krieger, N.; Ferreira, M.L. Immobilization and bioimprinting strategies to enhance the performance in organic medium of the metagenomic lipase LipC12. J. Biotechnol. 2021, 342, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Kahar, U.M.; Chan, K.G.; Sani, M.H.; Noh, N.I.M.; Goh, K.M. Effects of single and co-immobilization on the product specificity of type I pullulanase from Anoxybacillus sp SK3–4. Int. J. Biol. Macromol. 2017, 104, 322–332. [Google Scholar] [CrossRef]
- Gonzalez-Coronel, L.A.; Cobas, M.; Rostro-Alanis, M.D.; Parra-Saldivar, R.; Hernandez-Luna, C.; Pazos, M.; Sanroman, M.A. Immobilization of laccase of Pycnoporus sanguineus CS43. New Biotechnol. 2017, 39, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Gennari, A.; Mobayed, F.H.; Rafael, R.D.; Rodrigues, R.C.; Sperotto, R.A.; Volpato, G.; de Souza, C.F.V. Modification of Immobead 150 Support for Protein Immobilization: Effects on the Properties of Immobilized Aspergillus oryzae beta-Galactosidase. Biotechnol. Prog. 2018, 34, 934–943. [Google Scholar] [CrossRef]
- Binay, B.; Alagoz, D.; Yildirim, D.; Celik, A.; Tukel, S.S. Highly stable and reusable immobilized formate dehydrogenases: Promising biocatalysts for in situ regeneration of NADH. Beilstein J. Org. Chem. 2016, 12, 271–277. [Google Scholar] [CrossRef]
- Zdarta, J.; Jesionowski, T. Luffa cylindrica Sponges as a Thermally and Chemically Stable Support for Aspergillus niger Lipase. Biotechnol. Prog. 2016, 32, 657–665. [Google Scholar] [CrossRef]
- Dulęba, J.; Siódmiak, T.; Marszałł, M.P. Amano Lipase PS from Burkholderia cepacia—Evaluation of the Effect of Substrates and Reaction Media on the Catalytic Activity. Curr. Org. Chem. 2020, 24, 798–807. [Google Scholar] [CrossRef]
- Dulęba, J.; Siódmiak, T.; Marszałł, M.P. The influence of substrate systems on the enantioselective and lipolytic activity of immobilized Amano PS from Burkholderia cepacia lipase (APS-BCL). Process. Biochem. 2022, 130, 126–137. [Google Scholar] [CrossRef]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; El-Sabrout, K.; Alqaisi, O.; Dawood, M.A.O.; Soomro, H.; Abdelnour, S.A. Nutritional significance and health benefits of omega-3,-6 and-9 fatty acids in animals. Anim. Biotechnol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Cholewski, M.; Tomczykowa, M.; Tomczyk, M. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. Nutrients 2018, 10, 1662. [Google Scholar] [CrossRef] [PubMed]
- Dyerberg, J.; Madsen, P.; Moller, J.M.; Aardestrup, I.; Schmidt, E.B. Bioavailability of marine n-3 fatty acid formulations. Prostaglandins Leukot. Essent. Fatty Acids 2010, 83, 137–141. [Google Scholar] [CrossRef]
- Freeman, M.P.; Hibbeln, J.R.; Wisner, K.L.; Davis, J.M.; Mischoulon, D.; Peet, M.; Keck, P.E.; Mayangell, L.B.; Richardson, A.J.; Lake, J.; et al. Omega-3 fatty acids: Evidence basis for treatment and future research in psychiatry. J. Clin. Psychiatry 2006, 67, 1954–1967. [Google Scholar] [CrossRef]
- Curioni, C.C.; Alves, N.N.R.; Zago, L. Omega-3 supplementation in the treatment of overweight and obese children and adolescents: A systematic review. J. Funct. Foods 2019, 52, 340–347. [Google Scholar] [CrossRef]
- Das, U.N. Can Bioactive Lipids Inactivate Coronavirus (COVID-19)? Arch. Med. Res. 2020, 51, 282–286. [Google Scholar] [CrossRef]
- Yang, Z.Z.; Jin, W.H.; Cheng, X.Y.; Dong, Z.; Chang, M.; Wang, X.S. Enzymatic enrichment of n-3 polyunsaturated fatty acid glycerides by selective hydrolysis. Food Chem. 2021, 346, 128743. [Google Scholar] [CrossRef]
- Osadnik, K.; Jaworska, J. Analysis of ω-3 fatty acid content of polish fish oil drug and dietary supplements. Acta Pol. Pharm. 2016, 73, 875–883. [Google Scholar]
- Ciriminna, R.; Meneguzzo, F.; Delisi, R.; Pagliaro, M. Enhancing and improving the extraction of omega-3 from fish oil. Sustain. Chem. Pharm. 2017, 5, 54–59. [Google Scholar] [CrossRef]
- Hooper, L.; Al-Khudairy, L.; Abdelhamid, A.S.; Rees, K.; Brainard, J.S.; Brown, T.J.; Ajabnoor, S.M.; O’Brien, A.T.; Winstanley, L.E.; Donaldson, D.H.; et al. Omega-6 fats for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018, 7, CD011094. [Google Scholar] [PubMed]
- Halfen, S.; Jacometo, C.B.; Mattei, P.; Fenstenseifer, S.R.; Pfeifer, L.F.M.; Del Pino, F.A.B.; Santos, M.A.Z.; de Pereira, C.M.P.; Schmitt, E.; Correa, M.N. Diets Rich in Polyunsaturated Fatty Acids With Different Omega-6/Omega-3 Ratio Decrease Liver Content of Saturated Fatty Acids Across Generations of Wistar Rats. Braz. Arch. Biol. Technol. 2016, 59. [Google Scholar] [CrossRef][Green Version]
- Zhang, Y.F.; Ge, J.; Liu, Z. Enhanced Activity of Immobilized or Chemically Modified Enzymes. ACS Catal. 2015, 5, 4503–4513. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Alagoz, D.; Tukel, S.S.; Yildirim, D. Immobilization of pectinase on silica-based supports: Impacts of particle size and spacer arm on the activity. Int. J. Biol. Macromol. 2016, 87, 426–432. [Google Scholar] [CrossRef]
- Ameri, A.; Asadi, F.; Shakibaie, M.; Forootanfar, H.; Ranjbar, M. Hydroxyapatite/Glycyrrhizin/Lithium-Based Metal-Organic Framework (HA/GL/Li-MOF) Nanocomposite as Support for Immobilization of Thermomyces lanuginosus Lipase. Appl. Biochem. Biotechnol. 2022, 194, 2108–2134. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Lorente, G.; Palomo, J.M.; Fuentes, M.; Mateo, C.; Guisan, J.M.; Fernandez-Lafuente, R. Self-assembly of Pseudomonas fluorescens lipase into bimolecular aggregates dramatically affects functional properties. Biotechnol. Bioeng. 2003, 82, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Gocen, T.; Bayari, S.H.; Guven, M.H. Effects of chemical structures of omega-6 fatty acids on the molecular parameters and quantum chemical descriptors. J. Mol. Struct. 2018, 1174, 142–150. [Google Scholar] [CrossRef]
- Akanbi, T.O.; Barrow, C.J. Candida antarctica lipase A effectively concentrates DHA from fish and thraustochytrid oils. Food Chem. 2017, 229, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.Y.; Smith, C.E.; Lai, C.Q.; Irvin, M.R.; Parnell, L.D.; Lee, Y.C.; Pham, L.D.; Aslibekyan, S.; Claas, S.A.; Tsai, M.Y.; et al. The effects of omega-3 polyunsaturated fatty acids and genetic variants on methylation levels of the interleukin-6 gene promoter. Mol. Nutr. Food Res. 2016, 60, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, G.N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 1963, 7, 95–99. [Google Scholar] [CrossRef]
- Holt, A.P.; Bocharova, V.; Cheng, S.W.; Kisliuk, A.M.; White, B.T.; Saito, T.; Uhrig, D.; Mahalik, J.P.; Kumar, R.; Imel, A.E.; et al. Controlling Interfacial Dynamics: Covalent Bonding versus Physical Adsorption in Polymer Nanocomposites. ACS Nano 2016, 10, 6843–6852. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.N.; Jiang, Y.J.; Zhou, L.Y.; Gao, J. Immobilization of Candida antarctica lipase B by adsorption in organic medium. New Biotechnol. 2010, 27, 53–58. [Google Scholar] [CrossRef]
- dos Santos, E.A.L.; Lima, A.S.; Soares, C.M.F.; Santana, L. Lipase from Aspergillus niger obtained from mangaba residue fermentation: Biochemical characterization of free and immobilized enzymes on a sol-gel matrix. Acta Sci. Technol. 2017, 39, 1–8. [Google Scholar] [CrossRef][Green Version]
- Muley, A.B.; Awasthi, S.; Bhalerao, P.P.; Jadhav, N.L.; Singhal, R.S. Preparation of cross-linked enzyme aggregates of lipase from Aspergillus niger: Process optimization, characterization, stability, and application for epoxidation of lemongrass oil. Bioprocess. Biosyst. Eng. 2021, 44, 1383–1404. [Google Scholar] [CrossRef] [PubMed]
- da Silva, V.C.F.; Contesini, F.J.; Carvalho, P.D. Characterization and Catalytic Activity of Free and Immobilized Lipase from Aspergillus niger: A Comparative Study. J. Braz. Chem. Soc. 2008, 19, 1468–1474. [Google Scholar] [CrossRef]
- Zubiolo, C.; Santos, R.C.A.; Carvalho, N.B.; Soares, C.M.F.; Lima, A.S.; Santana, L. Encapsulation in a sol-gel matrix of lipase from Aspergillus niger obtained by bioconversion of a novel agricultural residue. Bioprocess. Biosyst. Eng. 2014, 37, 1781–1788. [Google Scholar] [CrossRef]
- Singh, A.K.; Mukhopadhyay, M. Immobilization of lipase on carboxylic acid-modified silica nanoparticles for olive oil glycerolysis. Bioprocess. Biosyst. Eng. 2018, 41, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Yong, Y.; Bai, Y.X.; Li, Y.F.; Lin, L.; Cui, Y.J.; Xia, C.G. Characterization of Candida rugosa lipase immobilized onto magnetic microspheres with hydrophilicity. Process. Biochem. 2008, 43, 1179–1185. [Google Scholar] [CrossRef]
Oil | ω3/ω6 | ω6/ω9 | ω3/ω9 | ω6/ω3 | ω9/ω3 | ω9/ω6 |
---|---|---|---|---|---|---|
Peanut | - | 0.09 | - | - | - | 10.95 |
Blackberry | 1.71 | - | - | 0.59 | - | - |
Rapeseed | 0.47 | 0.29 | 0.13 | 2.13 | 7.47 | 3.50 |
Pumpkin seed | - | 1.43 | - | - | - | 0.70 |
Walnut | 0.59 | 1.00 | 0.59 | 1.70 | 1.70 | 1.00 |
Sesame | - | 1.03 | - | - | - | 0.97 |
Avocado | - | 0.19 | - | - | - | 5.31 |
Rice | - | 0.73 | - | - | - | 1.38 |
Corn | - | 1.75 | - | - | - | 0.57 |
Black seed | - | 2.36 | - | - | - | 0.42 |
Hemp | 0.31 | 4.64 | 1.45 | 3.19 | 0.69 | 0.22 |
Safflower | - | 5.31 | - | - | - | 0.19 |
Grape seed | - | 3.44 | - | - | - | 0.29 |
Hazelnut | - | 0.12 | - | - | - | 8.09 |
Evening primrose | - | 10.09 | - | - | - | 0.10 |
Argan | - | 0.66 | - | - | - | 1.51 |
Milk thistle | - | 2.04 | - | - | - | 0.49 |
Borage | 0.02 | - | - | 58.00 | - | - |
Apricot kernel | - | 0.38 | - | - | - | 2.61 |
Olive | - | 0.10 | - | - | - | 9.71 |
Fish | 6.67 | 0.60 | 4.00 | 0.15 | 0.25 | 1.67 |
Sunflower | - | 0.04 | - | - | - | 24.21 |
Linseed | 0.04 | - | - | 24.23 | - | - |
Oils | LAB 1 (mg) | LL 2 (mg/g) | Iy 3 (%) | Ie 4 (%) | UB 5 (μmol/min) | UI 6 (μmol/min) |
---|---|---|---|---|---|---|
Peanut | 6.1 ± 0.1 | 122.0 ± 2.0 | 61.0 ± 1.0 | 250.00 | 0.67 ± 0.10 | 1.67 ± 0.10 |
Blackberry | 5.8 ± 0.1 | 116.0 ± 2.0 | 58.0 ± 1.0 | 158.82 | 2.83 ± 0.17 | 4.50 ± 0.35 |
Rapeseed | 5.9 ± 0.2 | 118.0 ± 4.0 | 59.0 ± 2.0 | 113.33 | 2.50 ± 0.10 | 2.83 ± 0.29 |
Pumpkin seed | 4.0 ± 0.3 | 80.0 ± 6.0 | 40.0 ± 3.0 | 2400.00 | 0.17 ± 0.09 | 4.00 ± 0.25 |
Walnut | 5.7 ± 0.1 | 114.0 ± 2.0 | 57.0 ± 1.0 | 440.00 | 0.83 ± 0.17 | 3.67 ± 0.42 |
Sesame | 6.5 ± 0.1 | 130.0 ± 2.0 | 65.0 ± 1.0 | 566.67 | 0.50 ± 0.10 | 2.83 ± 0.25 |
Avocado | 6.3 ± 0.2 | 126.0 ± 4.0 | 63.0 ± 2.0 | 428.57 | 1.17 ± 0.10 | 5.00 ± 0.17 |
Rice | 4.5 ± 0.1 | 90.0 ± 2.0 | 45.0 ± 1.0 | 134.38 | 5.33 ± 0.51 | 7.17 ± 0.09 |
Corn | 6.1 ± 0.1 | 122.0 ± 2.0 | 61.0 ± 1.0 | 1266.67 | 0.50 ± 0.10 | 6.33 ± 0.26 |
Black cumin | 6.2 ± 0.1 | 124.0 ± 2.0 | 62.0 ± 1.0 | 240.00 | 1.67 ± 0.10 | 4.00 ± 0.29 |
Hemp | 4.5 ± 0.2 | 90.0 ± 4.0 | 45.0 ± 2.0 | 516.67 | 1.00 ± 0.10 | 5.17 ± 0.17 |
Safflower | 5.2 ± 0.2 | 104.0 ± 4.0 | 52.0 ± 2.0 | 377.78 | 1.50 ± 0.10 | 5.67 ± 0.25 |
Grape seed | 5.0 ± 0.1 | 100.0 ± 2.0 | 50.0 ± 1.0 | 126.83 | 6.83 ± 0.35 | 8.67 ± 0.17 |
Hazelnut | 4.4 ± 0.2 | 88.0 ± 4.0 | 44.0 ± 2.0 | 433.33 | 0.50 ± 0.10 | 2.17 ± 0.17 |
Evening primrose | 4.4 ± 0.1 | 88.0 ± 2.0 | 44.0 ± 1.0 | 314.29 | 1.17 ± 0.17 | 3.67 ± 0.10 |
Argan | 4.6 ± 0.2 | 92.0 ± 4.0 | 46.0 ± 2.0 | 600.00 | 0.50 ± 0.10 | 3.00 ± 0.17 |
Milk thistle | 4.6 ± 0.2 | 92.0 ± 4.0 | 46.0 ± 2.0 | 343.75 | 2.67 ± 0.10 | 9.17 ± 0.25 |
Borage | 4.8 ± 0.1 | 98.0 ± 2.0 | 48.0 ± 1.0 | 980.00 | 0.83 ± 0.09 | 8.17 ± 0.10 |
Apricot kernel | 5.0 ± 0.1 | 100.0 ± 2.0 | 50.0 ± 1.0 | 310.00 | 1.67 ± 0.26 | 5.17 ± 0.35 |
Olive | 4.5 ± 0.2 | 90.0 ± 4.0 | 45.0 ± 2.0 | 38.24 | 11.33 ± 0.25 | 4.33 ± 0.17 |
Fish | 4.0 ± 0.3 | 80.0 ± 6.0 | 40.0 ± 3.0 | 1433.33 | 0.50 ± 0.10 | 7.17 ± 0.17 |
Sunflower | 4.7 ± 0.1 | 94.0 ± 2.0 | 47.0 ± 1.0 | 120.00 | 1.67 ± 0.26 | 2.00 ± 0.25 |
Linseed | 4.4 ± 0.2 | 88.0 ± 4.0 | 44.0 ± 2.0 | 175.00 | 1.17 ± 0.17 | 9.17 ± 0.10 |
Support | Interaction Type | Functional Group | Molecular Size (μm) | LAB 1 (mg) | LL 2 (mg/g) | Iy 3 (%) | UB 4 (μmol/min) | UI 5 (μmol/min) | Ie 6 (%) |
---|---|---|---|---|---|---|---|---|---|
IB-150A | Covalent | Epoxide, apolar | 150–300 | 3.7 ± 0.1 | 74.0 ± 2.0 | 37.0 ± 1.0 | 0.17 ± 0.09 | 0.33 ± 0.09 | 200.00 |
IB-D152 | Cationic | Carboxylic acid | 350–700 | 1.3 ± 0.1 | 26.0 ± 2.0 | 13.0 ± 1.0 | 1.00 ± 0.17 | 2.33 ± 0.10 | 233.00 |
IB-EC1 | Non-ionic, adsorption | Carboxylic ester | 350–700 | 5.0 ± 0.1 | 100.0 ± 2.0 | 50.0 ± 1.0 | 0.17 ± 0.09 | 0.17 ± 0.09 | 100.00 |
Temperature (°C) | Ie 1 (%) | UB 2 (μmol/min) | UI 3 (μmol/min) | Arel 4 (%) |
---|---|---|---|---|
25 | 800.00 | 0.17 ± 0.09 | 1.33 ± 0.21 | 100.00 ± 22.95 |
35 | 500.00 | 0.33 ± 0.09 | 1.67 ± 0.42 | 62.50 ± 21.31 |
45 | 400.00 | 0.67 ± 0.10 | 2.67 ± 0.17 | 50.00 ± 20.01 |
55 | 400.00 | 0.17 ± 0.09 | 0.67 ± 0.17 | 50.00 ± 14.93 |
65 | 150.00 | 0.67 ± 0.10 | 1.00 ± 0.16 | 18.75 ± 12.04 |
pH | Ie 1 (%) | UB 2 (μmol/min) | UI 3 (μmol/min) | Arel 4 (%) |
---|---|---|---|---|
4 | 250.00 | 0.33 ± 0.10 | 0.83 ± 0.33 | 13.89 ± 2.93 |
5 | 550.00 | 0.33 ± 0.17 | 1.83 ± 0.19 | 30.56 ± 17.65 |
6 | 1400.00 | 0.17 ± 0.09 | 2.33 ± 0.35 | 77.78 ± 21.33 |
7 | 1800.00 | 0.17 ± 0.09 | 3.00 ± 0.51 | 100.00 ± 30.02 |
8 | 1300.00 | 0.17 ± 0.09 | 2.17 ± 0.25 | 72.22 ± 34.74 |
9 | 700.00 | 0.33 ± 0.10 | 2.33 ± 0.51 | 38.89 ± 5.79 |
Oil Mixture 1:1 | LAB 1 | LL 2 | Iy 3 (%) | Ie 4 (%) | UB 5 (μmol/min) | UI 6 (μmol/min) |
---|---|---|---|---|---|---|
(a) Milk thistle + Sesame (+) | 5.6 ± 0.1 | 112.0 ± 2.0 | 56.0 ± 1.0 | 1800.00 | 0.17 ± 0.10 | 3.00 ± 0.10 |
(b) Sunflower + Avocado (+/−) | 5.7 ± 0.1 | 114.0 ± 2.0 | 57.0 ± 1.0 | 42.00 | 9.17 ± 0.26 | 3.83 ± 0.33 |
(c) Milk thistle + Sunflower (+/−) | 5.8 ± 0.1 | 116.0 ± 2.0 | 58.0 ± 1.0 | 400.00 | 1.00 ± 0.25 | 4.00 ± 0.15 |
(d) Pumpkin seed + Fish (+ +) | 5.5 ± 0.1 | 110.0 ± 2.0 | 55.0 ± 1.0 | 1600.00 | 0.17 ± 0.10 | 2.67 ± 0.26 |
(e) Olive + Rapeseed (−) | 5.5 ± 0.1 | 110.0 ± 2.0 | 55.0 ± 1.0 | 500.00 | 0.33 ± 0.09 | 1.67 ± 0.09 |
(f) Pumpkin seed + Olive (+ +/−) | 5.3 ± 0.1 | 106.0 ± 2.0 | 53.0 ± 1.0 | 1400.00 | 0.17 ± 0.10 | 2.33 ± 0.16 |
Support Reuse Cycle | UB 1 (μmol/min) | UI 2 (μmol/min) | Ie 3 (%) | Arel 4 (%) |
---|---|---|---|---|
1 | 1.83 ± 0.19 | 4.33 ± 0.25 | 236.00 | 100.00 ± 0.06 |
2 | n/a | 4.06 ± 0.18 | 221.00 | 94.00 ± 1.36 |
3 | n/a | 3.78 ± 0.22 | 206.00 | 87.00 ± 10.59 |
4 | n/a | 3.78 ± 0.12 | 206.00 | 87.00 ± 3.78 |
Storage Time (h) | UB 1 (μmol/min) | UI 2 (μmol/min) | Ie 3 (%) |
---|---|---|---|
24 | 2.50 ± 0.10 | 4.67 ± 0.10 | 187.00 |
168 | 2.17 ± 0.17 | 0.50 ± 0.17 | 23.00 |
Lipase | Km (mg/mL) | Vmax (U/mg) | kcat (s−1) | R2 |
---|---|---|---|---|
AA-ANL | 29.20 ± 0.08 | 0.061 ± 0.005 | 0.003 ± 0.001 | 0.933 |
AA-ANL-IB-150A | 1827.95 ± 0.17 | 1.648 ± 0.019 | 0.082 ± 0.006 | 0.986 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siódmiak, T.; Dulęba, J.; Kocot, N.; Wątróbska-Świetlikowska, D.; Marszałł, M.P. The High ‘Lipolytic Jump’ of Immobilized Amano A Lipase from Aspergillus niger in Developed ‘ESS Catalytic Triangles’ Containing Natural Origin Substrates. Catalysts 2022, 12, 853. https://doi.org/10.3390/catal12080853
Siódmiak T, Dulęba J, Kocot N, Wątróbska-Świetlikowska D, Marszałł MP. The High ‘Lipolytic Jump’ of Immobilized Amano A Lipase from Aspergillus niger in Developed ‘ESS Catalytic Triangles’ Containing Natural Origin Substrates. Catalysts. 2022; 12(8):853. https://doi.org/10.3390/catal12080853
Chicago/Turabian StyleSiódmiak, Tomasz, Jacek Dulęba, Natalia Kocot, Dorota Wątróbska-Świetlikowska, and Michał Piotr Marszałł. 2022. "The High ‘Lipolytic Jump’ of Immobilized Amano A Lipase from Aspergillus niger in Developed ‘ESS Catalytic Triangles’ Containing Natural Origin Substrates" Catalysts 12, no. 8: 853. https://doi.org/10.3390/catal12080853
APA StyleSiódmiak, T., Dulęba, J., Kocot, N., Wątróbska-Świetlikowska, D., & Marszałł, M. P. (2022). The High ‘Lipolytic Jump’ of Immobilized Amano A Lipase from Aspergillus niger in Developed ‘ESS Catalytic Triangles’ Containing Natural Origin Substrates. Catalysts, 12(8), 853. https://doi.org/10.3390/catal12080853