Plasma-Catalytic Process of Hydrogen Production from Mixture of Methanol and Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Reactor
2.2. Plasma Reactor
2.3. Plasma-Catalytic Reactor
2.4. Catalyst Characteristic
3. Materials and Methods
- P—discharge power, W
- F—frequency, Hz
- U—voltage, V
- I—current, A
- t—time, s
- W[H2]—production of hydrogen, mol/h
- q—gas flow rate [STP], dm3/h
- c—concentration of hydrogen
- V—molar volume of gas [STP], dm3/mol
- x—methanol conversion, %
- Win[MeOH]—inlet methanol flow rate, mol/h
- W[MeOH]—outlet methanol flow rate, mol/h
- V—molar volume of gas under standard conditions, dm3/mol
- Y—energy yield, mol(H2)/kWh
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schmidt-Szałowski, K.; Krawczyk, K.; Sentek, J.; Ulejczyk, B.; Górska, A.; Młotek, M. Hybrid plasma-catalytic systems for converting substances of high stability, greenhouse gases and VOC. Chem. Eng. Res. Des. 2011, 89, 2643–2654. [Google Scholar] [CrossRef]
- Vega-Gonzalez, A.; Duten, X.; Sauce, S. Plasma-Catalysis for Volatile Organic Compounds Decomposition: Complexity of the Reaction Pathways during Acetaldehyde Removal. Catalysis 2020, 10, 1146. [Google Scholar]
- Cimerman, R.; Cíbiková, M.; Satrapinskyy, L.; Hensel, K. The effect of packing material properties on tars removal by plasma catalysis. Catalysts 2020, 10, 1476. [Google Scholar] [CrossRef]
- Krawczyk, K.; Młotek, M.; Ulejczyk, B.; Schmidt-Szałowski, K. Methane conversion with carbon dioxide in plasma-catalytic system. Fuel 2014, 117, 608–617. [Google Scholar] [CrossRef]
- Ge, W.; Duan, X.; Li, Y.; Wang, B. Plasma catalyst synergy during methanol steam reforming in dielectric barrier discharge micro-plasma reactors for hydrogen production. Plasma Chem. Plasma Process. 2015, 35, 187–199. [Google Scholar] [CrossRef]
- Govender, B.B.; Iwarere, S.A.; Ramjugarnath, D. Plasma-catalytic Fisher-Tropsch synthesis at very high pressure. Catalysts 2021, 19, 297. [Google Scholar] [CrossRef]
- Ulejczyk, B.; Nogal, Ł.; Młotek, M.; Falkowski, P.; Krawczyk, K. Hydrogen production from ethanol using a special multi-segment plasma-catalytic reactor. J. Energy Inst. 2021, 95, 179–186. [Google Scholar] [CrossRef]
- Magureanu, M.; Mandache, N.B.; Paevulescu, V.I.; Subrahmanyam, C.; Renken, A.; Kiwi-Minsker, L. Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: Optimization of the reactor geometry and introduction of catalytic electrode. Appl. Catal. B Environ. 2007, 74, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Krawczyk, K.; Jodzis, S.; Lamenta, A.; Kostka, K.; Schmidt-Szalowski, K. Study on decomposition of tetrachloromethane as a model substance in environment of spark discharge plasma. Przem. Chem. 2010, 8, 1101–1106. [Google Scholar]
- Reda, E.; Jóźwik, P.; Krawczyk, K.; Młotek, M. Plasma-catalytic decomposition of cyclohexane in gliding discharge reactor. Appl. Catal. A Gen. 2015, 25, 150–158. [Google Scholar]
- Shak, J.R.; Harrison, J.M.; Carreon, M.L. Ammonia plasma-catalytic synthesis using low melting point alloys. Catalysts 2018, 8, 437. [Google Scholar]
- Młotek, M.; Ulejczyk, B.; Woroszył, J.; Walerczak, I.; Krawczyk, K. Purification of the gas after pyrolysis in coupled plasma-catalytic system. Pol. J. Chem. Technol. 2017, 19, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Du, C.M.; Ma, D.; Wu, J.; Lin, Y.; Xiao, W.; Ruan, J.; Huang, D. Plasma-catalysis reforming for H2 production from ethanol. Int. J. Hydrogen. Energy 2015, 40, 15398–15410. [Google Scholar] [CrossRef]
- Młotek, M.; Ulejczyk, B.; Woroszył, J.; Krawczyk, K. Coupled Plasma-Catalytic System with Rang 19pr Catalyst for Conversion of Tar. Sci. Rep. 2019, 9, 13562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Młotek, M.; Ulejczyk, B.; Woroszył, J.; Krawczyk, K. Decomposition of Toluene in Coupled Plasma-Catalytic System. Ind. Eng. Chem. Res. 2020, 59, 4239–4244. [Google Scholar] [CrossRef]
- Krawczyk, K.; Ulejczyk, B.; Song, H.K.; Lamenta, A.; Paluch, B.; Schmidt-Szałowski, K. Plasma-catalytic Reactor for Decomposition of Chlorinated Hydrocarbons. Plasma Chem. Plasma Process. 2009, 29, 27–41. [Google Scholar] [CrossRef]
- Wang, B.; Mikhail, M.; Gavadias, S.; Tatoulian, M.; Da Costa, P.; Ognier, S. Improvement of the activity of CO2 methanation in a hybrid plasma-catalytic process in varying catalyst particle size or under pressure. J. CO2 Util. 2021, 46, 101471. [Google Scholar] [CrossRef]
- Audemar, M.; Vallcorba, O.; Peral, I.; Thomann, J.S.; Przekora, A.; Pawlat, J.; Canal, C.; Ginalska, G.; Kwiatkowski, M.; Duday, D.; et al. Catalytic enrichment of plasma with hydroxyl radicals in the aqueous phase at room temperature. Catal. Sci. Technol. 2021, 11, 1430–1442. [Google Scholar] [CrossRef]
- Mosinska, M.; Stępińska, N.; Maniukiewicz, W.; Rogowski, J.; Mierczynska-Vasilev, A.; Vasilev, K.; Szynkowska, M.I.; Mierczyński, P. Hydrogen production on Cu-Ni catalysts via the oxy-steam reforming of methanol. Catalysts 2020, 10, 273. [Google Scholar] [CrossRef] [Green Version]
- Perez-Larios, A.; Rico, J.L.; Anaya-Esparza, L.M.; Gonzalez Vargas, O.A.; Gonzalez-Silva, N.; Gomez, R. Hydrogen production from aqueous methanol solutions using Ti–Zr mixed oxides as photocatalysts under UV irradiation. Catalysts 2019, 9, 938. [Google Scholar] [CrossRef] [Green Version]
- Ranjekar, A.M.; Yadav, G.D. Steam reforming of methanol for hydrogen production: A critical analysis of catalysis, processes, and scope. Ind. Eng. Chem. Res. 2021, 60, 89–113. [Google Scholar] [CrossRef]
- Pethaiah, S.S.; Sadasivuni, K.K.; Jayakumar, A.; Ponnamma, D.; Tiwary, C.S.; Sasikumar, G. Methanol electrolysis for hydrogen production using polymer electrolyte membrane: A mini-review. Energies 2020, 13, 5879. [Google Scholar] [CrossRef]
- Burlica, R.; Shin, K.Y.; Hnatiuc, B.; Locke, B.R. Hydrogen generation by pulsed gliding arc discharge plasma with sprays of alcohol solutions. Ind. Eng. Chem. Res. 2011, 50, 9466–9470. [Google Scholar] [CrossRef]
- Panda, N.R.; Sahu, D. Enhanced hydrogen generation efficiency of methanol using dielectric barrier discharge plasma methodology and conducting sea water as an electrode. Heliyon 2020, 6, e04717. [Google Scholar] [CrossRef]
- Bauschlichter, C.W.; Langhoff, S.R.; Walch, S.P. Theoretical study of the bond dissociation energies of methanol. J. Chem. Phys. 1992, 96, 450–454. [Google Scholar] [CrossRef]
- Maksyutenko, P.; Rizzo, T.R.; Boyarkin, O.V. A direct measurement of the dissociation energy of water. J. Chem. Phys. 2006, 125, 181101. [Google Scholar] [CrossRef]
- Bye, C.A.; Scheeline, A. Electron density profiles in single spark discharges. J. Quant. Spectrosc. Radiative 1995, 53, 75–93. [Google Scholar] [CrossRef]
- Cheng, C.; Shi, J.; Du, F.; Zong, S.; Guan, X.; Zhang, Y.; Liu, M.; Guo, L. Simply blending Ni nanoparticles with typical photocatalysts for efficient photocatalytic H2 production. Catal. Sci. Technol. 2019, 9, 7016–7022. [Google Scholar] [CrossRef]
- Husin, H.; Pontas, K.; Yunardu, Y.; Salamun, A.; Alam, P.N.; Hasfita, F. Photocatalytic hydrogen production over Ni/La-NaTaO3 nanoparticles from NaCl-water solution in the presence of glucose as electron donor. ASEAN J. Chem. Eng. 2017, 17, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Garay-Rodríguez, L.F.; Murcia-López, S.; Andreu, T.; Moctezuma, E.; Torres-Martínez, L.M.; Morante, J.R. Photocatalytic hydrogen evolution using bi-metallic (Ni/Pt) Na2Ti3O7 whiskers: Effect of the deposition order. Catalysts 2019, 9, 285. [Google Scholar] [CrossRef] [Green Version]
- Laosiripojana, N.; Assabumrungrat, S. Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC. J. Power Sources 2007, 163, 943–951. [Google Scholar] [CrossRef]
- Li, J.; Mei, X.; Zhang, L.; Yu, Z.; Liu, Q.; Wei, T.; Wu, W.; Dong, D.; Xu, L.; Hu, X. A comparative study of catalytic behaviors of Mn, Fe, Co, Ni, Cu and Zn-based catalysts in steam reforming of methanol, acetic acid and acetone. Int. J. Hydrogen. Energy 2020, 45, 3815–3832. [Google Scholar] [CrossRef]
- Bobadilla, L.F.; Palma, S.; Ivanova, S.; Dominguez, M.I.; Romero-Sarria, F.; Centeno, M.A.; Odriozola, J.A. Steam reforming of methanol over supported Ni and Ni-Sn nanoparticles. Int. J. Hydrogen. Energy 2013, 38, 6646–6656. [Google Scholar] [CrossRef]
- Papavasiliou, J.; Paxinou, A.; Słowik, G.; Neophytides, S.; Avgouropoulos, G. Steam reforming of methanol over nanostructured Pt/ToO2 and Pt/CeO2 catalysts for fuel call applications. Catalysts 2018, 8, 544. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Huang, C.; Zong, L.; Wang, X.; Cai, J. Hydrogen production from methanol steam reforming over TiO2 and CeO2 pillared clay supported Au catalysts. Appl. Sci. 2018, 8, 176. [Google Scholar] [CrossRef] [Green Version]
- Papavasiliou, J.; Słowik, G.; Avgouropoulos, G. Redox behavior of a copper-based methanol reformer for fuel cell applications. Energy Technol. 2018, 6, 1332–1341. [Google Scholar] [CrossRef]
- Xu, Z.F.; Raghunath, P.; Lin, M.C. Ab-initio chemical kinetics for the CH3 + O(3P) reaction and related isomerization−decomposition of CH3O and CH2OH radicals. J. Phys. Chem. A 2015, 119, 7404–7417. [Google Scholar] [CrossRef] [PubMed]
- Bouallagui, A.; Zanchet, A.; Yazidi, O.; Jaidane, N.; Banares, L.; Senent, M.L.; Garcia-Vela, A. Photodissociation of the CH3O and CH3S radical molecules: An ab initio electronic structure study. Phys. Chem. Chem. Phys. 2017, 19, 31245. [Google Scholar] [CrossRef]
- Cribb, P.H.; Dove, J.E.; Yamazaki, S. A kinetic study of the pyrolysis of methanol using shock tube and computer simulation techniques. Combust. Flame 1992, 88, 169–185. [Google Scholar] [CrossRef]
- Tsang, W. Chemical kinetic data base for combustion chemistry. Part 2. Methanol. J. Phys. Chem. Ref. 1987, 16, 471–508. [Google Scholar] [CrossRef]
- Hoyermann, K.; Loftfield, N.S.; Sievert, R.; Wagner, H.G. Mechanism and Rates of the Reactions of CH3O and CH2OH Radicals with H Atoms. Symp. Int. Combust. Proc. 1981, 18, 831–842. [Google Scholar] [CrossRef]
- Jasper, A.W.; Klippenstein, S.J.; Harding, L.B. Theoretical rate coefficients for the reaction of methyl radical with hydroperoxyl radical and for methylhydroperoxide decomposition. Proc. Combust. Inst. 2009, 32, 279–286. [Google Scholar] [CrossRef]
- Rhee, T.S.; Brenninkmeijer, C.A.M.; Rockmann, T. Hydrogen isotope fractionation in the photolysis of formaldehyde. Atmos. Chem. Phys. 2008, 8, 1353–1366. [Google Scholar] [CrossRef] [Green Version]
- Irdam, E.A.; Kiefer, J.H.; Harding, L.B.; Wagner, A.F. The formaldehyde decomposition chain mechanism. Int. J. Chem. Kinet. 1993, 25, 285–303. [Google Scholar] [CrossRef]
- Temps, F.; Wagner, H.G. Rate constants for the reactions of OH-radicals with CH2O and HCO. Ber. Bunsenges. Phys. Chem. 1984, 88, 415–418. [Google Scholar] [CrossRef]
- Krasnoperov, L.N.; Chesnokov, E.N.; Stark, H.; Ravishankara, A.R. Unimolecular dissociation of formyl radical, HCO→H + CO, studied over 1-100 bar pressure range. J. Phys. Chem. A 2004, 108, 1526–11536. [Google Scholar] [CrossRef]
- Kaufman, F.; Del Greco, F.P. Fast reactions of OH radicals. Symp. Int. Combust. Proc. 1963, 9, 659–668. [Google Scholar] [CrossRef]
- Sangwan, M.; Chesnokov, E.N.; Krasnoperov, L.N. Reaction OH plus OH Studied over the 298-834 K Temperature and 1–100 bar Pressure Ranges. J. Phys. Chem. A 2012, 116, 6282–6294. [Google Scholar] [CrossRef]
- Larson, C.W.; Stewart, P.H.; Golden, D.M. Pressure and temperature dependence of reactions proceeding via a bound complex. An approach for combustion and atmospheric chemistry modelers. Application to HO + CO → [HOCO] → H + CO2. Int. J. Chem. Kinet. 1988, 20, 27–40. [Google Scholar] [CrossRef]
- Baldwin, R.R.; Jackson, D.; Melvin, A.; Rossiter, B.N. The Second Limit of Hydrogen + Carbon Monoxide + Oxygen Mixtures. Int. J. Chem. Kinet. 1972, 4, 277–292. [Google Scholar] [CrossRef]
- Ma, S.; Liu, R. Theoretical studies on the reaction path and dynamics of the reaction CH3 + H2O → CH4 + OH. Sci. China Ser. B 1996, 39, 37–44. [Google Scholar]
- Brouard, M.; Macpherson, M.T.; Pilling, M.J. Experimental and RRKM modeling study of the CH3 + H and CH3 + D Reactions. J. Phys. Chem. 1989, 93, 4047–4059. [Google Scholar] [CrossRef]
- Shannon, T.W.; Harrison, A.G. The reaction of methyl radicals with methyl alcohol. Can. J. Chem. 1963, 41, 2455–2461. [Google Scholar] [CrossRef]
- Thynne, J.C.J.; Gray, P. Methoxyl-radical-induced decomposition of methyl formate: Kinetics of methoxyl and methyl radical reactions. Trans. Faraday Soc. 1963, 59, 1149–1155. [Google Scholar] [CrossRef]
- Jasper, A.W.; Klippenstein, S.J.; Harding, L.B.; Rustic, B. Kinetics of the reaction of methyl radical with hydroxyl radical and methanol decomposition. J. Phys. Chem. A 2007, 111, 3932–3950. [Google Scholar] [CrossRef]
- Kierzkowska-Pawlak, H.; Tracz, P.; Redzynia, W.; Tyczkowski, J. Plasma deposited novel nanocatalysts fof CO2 hydrogenation to methane. J. CO2 Util. 2017, 17, 312–319. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Q.; Aoki, T.; Crozier, P.A. Structural evolution during photocorrosion of Ni/NiO core/shell cocatalyst on TiO2. J. Phys. Chem. C 2015, 119, 7207–7214. [Google Scholar] [CrossRef]
- Xie, K.; Guo, P.; Xiong, Z.; Sun, S.; Wang, H.; Gao, Y. Ni/NiO hybrid nanostructure supported on biomass carbon for visible-light photocatalytic hydrogen evolution. J. Mater. Sci. 2021, 56, 12775–12788. [Google Scholar] [CrossRef]
- Turczyniak, S.; Teschner, D.; Machocki, A.; Zafeiratos, S. Effect of ten surface on the catalytic performance of a Co/CeO2 ethanol steam reforming catalyst. J. Catal. 2016, 340, 321–330. [Google Scholar] [CrossRef]
- Jozwiak, L.; Balcerzak, J.; Tyczkowski, J. Plasma-deposited Ru-based thin films for photoelectrochemical water splitting. Catalysts 2020, 10, 278. [Google Scholar] [CrossRef] [Green Version]
- Ulejczyk, B.; Nogal, Ł.; Młotek, M.; Krawczyk, K. Hydrogen production from ethanol using dielectric barrier discharge. Energy 2019, 174, 261–268. [Google Scholar] [CrossRef]
Reactor | Power, W | Temperature, °C | Concentration, % | |||
---|---|---|---|---|---|---|
H2 | CO | CO2 | CH4 | |||
Catalytic | - | 400 | 60.1 | 24.2 | 3.5 | 0.3 |
450 | 60.6 | 20.3 | 6.8 | 0.3 | ||
500 | 61.0 | 18.5 | 8.0 | 0.4 | ||
550 | 61.4 | 15.3 | 10.4 | 0.4 | ||
600 | 60.8 | 18.9 | 7.7 | 0.4 | ||
Plasma-catalytic | 15 | 400 | 59.2 | 25.5 | 2.7 | 0.6 |
450 | 60.2 | 21.2 | 6.1 | 0.5 | ||
500 | 60.5 | 19.3 | 7.5 | 0.6 | ||
550 | 60.9 | 17.1 | 9.1 | 0.6 | ||
600 | 60.4 | 18.8 | 7.8 | 0.6 | ||
Plasma-catalytic | 30 | 400 | 59.4 | 22.1 | 5.4 | 1.1 |
450 | 59.8 | 21.6 | 5.8 | 0.9 | ||
500 | 60.0 | 19.5 | 7.4 | 1.1 | ||
550 | 60.1 | 18.2 | 8.3 | 1.2 | ||
600 | 59.0 | 21.9 | 5.4 | 1.3 | ||
Plasma-catalytic | 46 | 400 | 59.4 | 22.1 | 5.4 | 1.1 |
450 | 59.7 | 21.6 | 5.8 | 0.9 | ||
500 | 60.0 | 19.5 | 7.3 | 1.1 | ||
550 | 60.0 | 18.1 | 8.3 | 1.2 | ||
600 | 58.9 | 21.9 | 5.4 | 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulejczyk, B.; Nogal, Ł.; Jóźwik, P.; Młotek, M.; Krawczyk, K. Plasma-Catalytic Process of Hydrogen Production from Mixture of Methanol and Water. Catalysts 2021, 11, 864. https://doi.org/10.3390/catal11070864
Ulejczyk B, Nogal Ł, Jóźwik P, Młotek M, Krawczyk K. Plasma-Catalytic Process of Hydrogen Production from Mixture of Methanol and Water. Catalysts. 2021; 11(7):864. https://doi.org/10.3390/catal11070864
Chicago/Turabian StyleUlejczyk, Bogdan, Łukasz Nogal, Paweł Jóźwik, Michał Młotek, and Krzysztof Krawczyk. 2021. "Plasma-Catalytic Process of Hydrogen Production from Mixture of Methanol and Water" Catalysts 11, no. 7: 864. https://doi.org/10.3390/catal11070864
APA StyleUlejczyk, B., Nogal, Ł., Jóźwik, P., Młotek, M., & Krawczyk, K. (2021). Plasma-Catalytic Process of Hydrogen Production from Mixture of Methanol and Water. Catalysts, 11(7), 864. https://doi.org/10.3390/catal11070864