Photocatalysis: Activity of Nanomaterials
Author Contributions
Funding
Conflicts of Interest
References
- Tofa, T.S.; Ye, F.; Kunjali, K.L.; Dutta, J. Enhanced Visible Light Photodegradation of Microplastic Fragments with Plasmonic Platinum/Zinc Oxide Nanorod Photocatalysts. Catalysts 2019, 9, 819. [Google Scholar] [CrossRef] [Green Version]
- Lau, G.E.; Che Abdullah, C.A.; Wan Ahmad, W.A.N.; Assaw, S.; Zheng, A.L.T. Eco-Friendly Photocatalysts for Degradation of Dyes. Catalysts 2020, 10, 1129. [Google Scholar] [CrossRef]
- Boaretti, C.; Vitiello, G.; Luciani, G.; Lorenzetti, L.; Modesti, M.; Roso, M. Electrospun Active Media Based on Polyvinylidene Fluoride (PVDF)-Graphene-TiO2 Nanocomposite Materials for Methanol and Acetaldehyde Gas-Phase Abatement. Catalysts 2020, 10, 1017. [Google Scholar] [CrossRef]
- Kaus, N.H.M.; Rithwan, A.F.; Adnan, R.; Ibrahim, M.L.; Thongmee, S.; Yusoff, S.F.M. Effective Strategies, Mechanisms, and Photocatalytic Efficiency of Semiconductor Nanomaterials Incorporating rGO for Environmental Contaminant Degradation—Review. Catalysts 2021, 11, 302. [Google Scholar] [CrossRef]
- Hampel, B.; Pap, Z.; Sapi, A.; Szamosvolgyi, A.; Baia, L.; Hernadi, K. Application of TiO2-Cu Composites in Photocatalytic Degradation Different Pollutants and Hydrogen Production. Catalysts 2020, 10, 85. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, N.; Zhao, F.; Liu, T.; Wang, Y. Facile Fabrication of a Novel Au/Phosphorus-Doped g-C3N4 Photocatalyst with Excellent Visible Light Photocatalytic Activity. Catalysts 2020, 10, 701. [Google Scholar] [CrossRef]
- Ortiz, Y.G.D.; de la Osa, R.A.; Saiz, J.M.; González, F.; Moreno, F. Electromagnetic Effective Medium Modelling of Composites with Metal-Semiconductor Core-Shell Type Inclusions. Catalysts 2019, 9, 626. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Heo, J.N.; Do, J.Y.; Yoon, S.J.; Kim, Y.; Kang, M. Hydrogen Production Improvement on Water Decomposition Through Internal Interfacial Charge Transfer in M3(PO4)2-M2P2O7 Mixed-Phase Catalyst (M = Co, Ni, and Cu). Catalysts 2019, 9, 602. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Kan, P.; Zhang, Q.; Zhou, Y. Oxygen Vacancy Enhanced Photoreduction Cr(VI) on Few-Layers BiOBr Nanosheets. Catalysts 2019, 9, 558. [Google Scholar] [CrossRef] [Green Version]
- San Martín, S.; Rivero, M.J.; Ortiz, I. Unravelling the Mechanisms that Drive the Performance of Photocatalytic Hydrogen Production. Catalysts 2020, 10, 901. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitiello, G.; Luciani, G. Photocatalysis: Activity of Nanomaterials. Catalysts 2021, 11, 611. https://doi.org/10.3390/catal11050611
Vitiello G, Luciani G. Photocatalysis: Activity of Nanomaterials. Catalysts. 2021; 11(5):611. https://doi.org/10.3390/catal11050611
Chicago/Turabian StyleVitiello, Giuseppe, and Giuseppina Luciani. 2021. "Photocatalysis: Activity of Nanomaterials" Catalysts 11, no. 5: 611. https://doi.org/10.3390/catal11050611
APA StyleVitiello, G., & Luciani, G. (2021). Photocatalysis: Activity of Nanomaterials. Catalysts, 11(5), 611. https://doi.org/10.3390/catal11050611