[18F]FDG PET/MRI in Endometrial Cancer: Prospective Evaluation of Preoperative Staging, Molecular Characterization and Prognostic Assessment
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. [18F]FDG PET/MRI Protocol
2.3. [18F]FDG PET/MRI Analysis
2.4. Surgery and Histopathological Analysis
2.5. Statistical Analysis
3. Results
3.1. Participants and EC Characteristics
3.2. [18F]FDG PET/MRI Diagnostic Accuracy
3.3. [18F]FDG PET/MR Parameters’ Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SUV | Standardized Uptake Value |
| MTV | Metabolic Tumor Volume |
| TLG | Total Lesion Glycolysis |
| TTV | Total Tumor Volume |
| TUV | Total Uterine Volume |
| TVR | Tumor Volume Ratio |
| Size_AP | Antero-Posterior Diameter |
| Size_LL | Latero-Lateral Diameter |
| Size_CC | Cranio-Caudal Diameter |
| ADC | Apparent Diffusion Coefficient |
| Ktrans | Transfer Constant |
| Kep | Efflux Rate |
| Ve | Extravascular Extracellular Volume |
| CER | Contrast–Enhancement Ratio |
| maxSLOPE | Maximum Slope of Increase |
References
- Hu, Z.; Wu, Z.; Liu, W.; Ning, Y.; Liu, J.; Ding, W.; Fan, J.; Cai, S.; Li, Q.; Li, W.; et al. Proteogenomic Insights into Early-Onset Endometrioid Endometrial Carcinoma: Predictors for Fertility-Sparing Therapy Response. Nat. Genet. 2024, 56, 637–651. [Google Scholar] [CrossRef]
- Setiawan, V.W.; Yang, H.P.; Pike, M.C.; McCann, S.E.; Yu, H.; Xiang, Y.-B.; Wolk, A.; Wentzensen, N.; Weiss, N.S.; Webb, P.M.; et al. Type I and II Endometrial Cancers: Have They Different Risk Factors? J. Clin. Oncol. 2013, 31, 2607–2618. [Google Scholar] [CrossRef]
- Narayan, K.; Rejeki, V.; Herschtal, A.; Bernshaw, D.; Quinn, M.; Jobling, T.; Allen, D. Prognostic Significance of Several Histological Features in Intermediate and High-risk Endometrial Cancer Patients Treated with Curative Intent Using Surgery and Adjuvant Radiotherapy. J. Med. Imaging Radiat. Oncol. 2009, 53, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, L.E.; Kunos, C.A.; Zanotti, K.M. Lymphovascular Space Invasion (LVSI) Is an Isolated Poor Prognostic Factor for Recurrence and Survival Among Women with Intermediate- to High-Risk Early-Stage Endometrioid Endometrial Cancer. Int. J. Gynecol. Cancer 2013, 23, 1438–1445. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Hong, D.; Park, J.Y. Association between Morphological Patterns of Myometrial Invasion and Cancer Stem Cell Markers in Endometrial Endometrioid Carcinoma. Pathol. Oncol. Res. 2019, 25, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Getz, G.; Gabriel, S.B.; Cibulskis, K.; Lander, E.; Sivachenko, A.; Sougnez, C.; Lawrence, M.; Kandoth, C.; Dooling, D.; Fulton, R.; et al. Integrated Genomic Characterization of Endometrial Carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef]
- Berek, J.S.; Matias-Guiu, X.; Creutzberg, C.; Fotopoulou, C.; Gaffney, D.; Kehoe, S.; Lindemann, K.; Mutch, D.; Concin, N. Endometrial Cancer Staging Subcommittee, FIGO Women’s Cancer Committee. FIGO Staging of Endometrial Cancer: 2023. J. Gynecol. Oncol. 2023, 34, e85. [Google Scholar] [CrossRef]
- Colombo, N.; Creutzberg, C.; Amant, F.; Bosse, T.; González-Martín, A.; Ledermann, J.; Marth, C.; Nout, R.; Querleu, D.; Mirza, M.R.; et al. ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: Diagnosis, Treatment and Follow-Up. Radiother. Oncol. 2015, 117, 559–581. [Google Scholar] [CrossRef]
- Concin, N.; Matias-Guiu, X.; Vergote, I.; Cibula, D.; Mirza, M.R.; Marnitz, S.; Ledermann, J.; Bosse, T.; Chargari, C.; Fagotti, A.; et al. ESGO/ESTRO/ESP Guidelines for the Management of Patients with Endometrial Carcinoma. Int. J. Gynecol. Cancer 2021, 31, 12–39. [Google Scholar] [CrossRef]
- Bezzi, C.; Zambella, E.; Ghezzo, S.; Fallanca, F.; Samanes Gajate, A.M.; Franchini, A.; Ironi, G.; Bergamini, A.; Monaco, L.; Evangelista, L.; et al. 18F-FDG PET/MRI in Endometrial Cancer: Systematic Review and Meta-Analysis. Clin. Transl. Imaging 2021, 10, 45–58. [Google Scholar] [CrossRef]
- Mapelli, P.; Bergamini, A.; Fallanca, F.; Rancoita, P.M.V.; Cioffi, R.; Incerti, E.; Rabaiotti, E.; Petrone, M.; Mangili, G.; Candiani, M.; et al. Función Pronóstica de Los Parámetros Derivados de FDG PET En La Estadificación Preoperatoria Del Cáncer de Endometrio. Rev. Española Med. Nucl. Imagen Mol. 2019, 38, 3–9. [Google Scholar] [CrossRef]
- Bezzi, C.; Bergamini, A.; Mathoux, G.; Ghezzo, S.; Monaco, L.; Candotti, G.; Fallanca, F.; Gajate, A.M.S.; Rabaiotti, E.; Cioffi, R.; et al. Role of Machine Learning (ML)-Based Classification Using Conventional 18F-FDG PET Parameters in Predicting Postsurgical Features of Endometrial Cancer Aggressiveness. Cancers 2023, 15, 325. [Google Scholar] [CrossRef]
- Ironi, G.; Mapelli, P.; Bergamini, A.; Fallanca, F.; Candotti, G.; Gnasso, C.; Taccagni, G.L.; Sant’Angelo, M.; Scifo, P.; Bezzi, C.; et al. Hybrid PET/MRI in Staging Endometrial Cancer. Clin. Nucl. Med. 2022, 47, e221–e229. [Google Scholar] [CrossRef] [PubMed]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.G.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM Procedure Guidelines for Tumour Imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [PubMed]
- Meissnitzer, M.; Forstner, R. MRI of Endometrium Cancer—How We Do It. Cancer Imaging 2016, 16, 11. [Google Scholar] [CrossRef]
- Nougaret, S.; Horta, M.; Sala, E.; Lakhman, Y.; Thomassin-Naggara, I.; Kido, A.; Masselli, G.; Bharwani, N.; Sadowski, E.; Ertmer, A.; et al. Endometrial Cancer MRI Staging: Updated Guidelines of the European Society of Urogenital Radiology. Eur. Radiol. 2019, 29, 792–805. [Google Scholar] [CrossRef] [PubMed]
- Tofts, P.S.; Brix, G.; Buckley, D.L.; Evelhoch, J.L.; Henderson, E.; Knopp, M.V.; Larsson, H.B.W.; Lee, T.-Y.; Mayr, N.A.; Parker, G.J.M.; et al. Estimating Kinetic Parameters from Dynamic Contrast-Enhanced T1-Weighted MRI of a Diffusable Tracer: Standardized Quantities and Symbols. J. Magn. Reson. Imaging 1999, 10, 223–232. [Google Scholar] [CrossRef]
- Creasman, W. Revised FIGO Staging for Carcinoma of the Endometrium. Int. J. Gynecol. Obstet. 2009, 105, 109. [Google Scholar] [CrossRef]
- Stelloo, E.; Jansen, A.M.L.; Osse, E.M.; Nout, R.A.; Creutzberg, C.L.; Ruano, D.; Church, D.N.; Morreau, H.; Smit, V.T.H.B.M.; van Wezel, T.; et al. Practical Guidance for Mismatch Repair-Deficiency Testing in Endometrial Cancer. Ann. Oncol. 2017, 28, 96–102. [Google Scholar] [CrossRef]
- Tsuyoshi, H.; Tsujikawa, T.; Yamada, S.; Okazawa, H.; Yoshida, Y. Diagnostic Value of 18F-FDG PET/MRI for Staging in Patients with Endometrial Cancer. Cancer Imaging 2020, 20, 75. [Google Scholar] [CrossRef]
- Bian, L.H.; Wang, M.; Gong, J.; Liu, H.H.; Wang, N.; Wen, N.; Fan, W.S.; Xu, B.X.; Wang, M.Y.; Ye, M.X.; et al. Comparison of Integrated PET/MRI with PET/CT in Evaluation of Endometrial Cancer: A Retrospective Analysis of 81 Cases. PeerJ 2019, 2019, e7081. [Google Scholar] [CrossRef]
- Meireles, C.G.; Pereira, S.A.; Valadares, L.P.; Rêgo, D.F.; Simeoni, L.A.; Guerra, E.N.S.; Lofrano-Porto, A. Effects of Metformin on Endometrial Cancer: Systematic Review and Meta-Analysis. Gynecol. Oncol. 2017, 147, 167–180. [Google Scholar] [CrossRef] [PubMed]
- DeCensi, A.; Puntoni, M.; Goodwin, P.; Cazzaniga, M.; Gennari, A.; Bonanni, B.; Gandini, S. Metformin and Cancer Risk in Diabetic Patients: A Systematic Review and Meta-Analysis. Cancer Prev. Res. 2010, 3, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Schink, J.C.; Miller, D.S.; Lurain, J.R.; Rademaker, A.W. Tumor Size in Endometrial Cancer. Cancer 1991, 67, 2791–2794. [Google Scholar] [CrossRef] [PubMed]
- Mariani, A.; Webb, M.J.; Keeney, G.L.; Haddock, M.G.; Calori, G.; Podratz, K.C. Low-Risk Corpus Cancer: Is Lymphadenectomy or Radiotherapy Necessary? Am. J. Obstet. Gynecol. 2000, 182, 1506–1519. [Google Scholar] [CrossRef]
- Milam, M.R.; Java, J.; Walker, J.L.; Metzinger, D.S.; Parker, L.P.; Coleman, R.L. Nodal Metastasis Risk in Endometrioid Endometrial Cancer. Obstet. Gynecol. 2012, 119, 286–292. [Google Scholar] [CrossRef]
- Creasman, W.; Odicino, F.; Maisonneuve, P.; Quinn, M.; Beller, U.; Benedet, J.; Heintz, A.; Ngan, H.; Pecorelli, S. Carcinoma of the Corpus Uteri. Int. J. Gynecol. Obstet. 2006, 95, S105–S143. [Google Scholar] [CrossRef]
- Rousset-Rouviere, S.; Rochigneux, P.; Chrétien, A.-S.; Fattori, S.; Gorvel, L.; Provansal, M.; Lambaudie, E.; Olive, D.; Sabatier, R. Endometrial Carcinoma: Immune Microenvironment and Emerging Treatments in Immuno-Oncology. Biomedicines 2021, 9, 632. [Google Scholar] [CrossRef]
- Dudley, J.C.; Lin, M.-T.; Le, D.T.; Eshleman, J.R. Microsatellite Instability as a Biomarker for PD-1 Blockade. Clin. Cancer Res. 2016, 22, 813–820. [Google Scholar] [CrossRef]
- Reinfeld, B.I.; Madden, M.Z.; Wolf, M.M.; Chytil, A.; Bader, J.E.; Patterson, A.R.; Sugiura, A.; Cohen, A.S.; Ali, A.; Do, B.T.; et al. Cell-Programmed Nutrient Partitioning in the Tumour Microenvironment. Nature 2021, 593, 282–288. [Google Scholar] [CrossRef]
- Jamieson, A.; Thompson, E.F.; Huvila, J.; Gilks, C.B.; McAlpine, J.N. P53abn Endometrial Cancer: Understanding the Most Aggressive Endometrial Cancers in the Era of Molecular Classification. Int. J. Gynecol. Cancer 2021, 31, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Wang, Y.; Zhu, W.; Chen, L.; Wang, N.; Lin, L.; Liu, A. The Value of Multimodal Functional Magnetic Resonance Imaging in Differentiating P53abn from P53wt Endometrial Carcinoma. Acta Radiol. 2023, 64, 2948–2956. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, T.; Ning, Y.; Li, S.; Chen, X.; Zhang, G.; Zhang, H. Using Apparent Diffusion Coefficient (ADC) of Endometrial Cancer MRI to Determine P53 Molecular Subtypes. Curr. Med. Imaging Rev. 2024, 20, e15734056289592. [Google Scholar] [CrossRef]






| Characteristic | Value |
|---|---|
| Age, years | 63 (11.8) |
| FIGO stage | |
| IA | 32 (40.00%) |
| IB | 25 (31.25%) |
| II | 3 (3.75%) |
| IIIA | 4 (5.00%) |
| IIIB | 1 (1.25%) |
| IIIC1 | 9 (11.25%) |
| IIIC2 | 2 (2.50%) |
| IVB | 4 (5.00%) |
| Grade | |
| 1 | 9 (11.20%) |
| 2 | 45 (56.20%) |
| 3 | 26 (32.50%) |
| Histology | |
| Endometroid | 64 (80.00%) |
| Serous | 6 (7.50%) |
| Mixed serous/endometroid | 1 (1.20%) |
| Mixed clear cells/serous | 2 (2.50%) |
| Other (MMT/squamocellular) | 7 (8.70%) |
| Infiltration pattern | |
| Infiltrative | 16 (20.00%) |
| Expansive | 51 (63.70%) |
| Infiltrative and Expansive | 3 (3.70%) |
| MELF | 1 (1.25%) |
| No infiltration | 9 (11.20%) |
| MMRd | |
| yes | 18 (22.50%) |
| no | 31 (38.75%) |
| unavailable | 31 (38.75%) |
| Lymph node metastases | |
| yes | 13 (16.70%) |
| no | 65 (81.25%) |
| unavailable | 2 (2.50%) |
| p53 | |
| abnormal (abn) | 17 (21.25%) |
| wild-type | 62 (77.50%) |
| unavailable | 1 (1.20%) |
| Lymph vascular space invasion | |
| yes | 31 (38.70%) |
| no | 49 (61.30%) |
| Myometrial invasion | |
| yes | 38 (47.50%) |
| no | 42 (52.50%) |
| Serosa invasion | |
| yes | 5 (6.25%) |
| no | 73 (91.25%) |
| unavailable | 2 (2.50%) |
| Parametria invasion | |
| yes | 3 (3.75%) |
| no | 76 (95.00%) |
| unavailable | 1 (1.25%) |
| Cervical stroma invasion | |
| yes | 16 (20.00%) |
| no | 64 (80.00%) |
| Adjuvant therapy administration * | |
| yes | 43 (53.70%) |
| no | 37 (46.20%) |
| Tumor recurrence | |
| yes | 9 (11.25%) |
| no | 71 (88.75%) |
| Variable | LN | p53 | MMRd | Histotype | Infiltration Pattern | LVSI | Deep MI | Adjuvant Therapy | Relapse |
|---|---|---|---|---|---|---|---|---|---|
| MRI-detected MI | 10.214 (0.003 *) | 2.348 (0.21) | 1.511 (0.85) | 1.020 (>0.99) | 1.899 (0.29) | 5.380 (0.003 *) | 30.933 (<0.001 *) | 7.511 (0.001 *) | 13.667 (0.02 *) |
| MRI-detected CSI | 7.714 (0.007 *) | 2.020 (0.45) | 0.943 (>0.99) | 0.441 (0.57) | 4.278 (0.09) | 10.476 (0.003 *) | inf (<0.001 *) | 11.367 (0.018 *) | 4.978 (0.06) |
| MRI-detected LNs | 30.400 (<0.001 *) | 4.417 (0.16) | 1.667 (0.85) | 0.564 (0.57) | 2.619 (0.21) | 4.333 (0.048 *) | 11.724 (0.010 *) | 10.000 (0.024 *) | 6.629 (0.06) |
| PET- detected LNs | 173.250 (<0.001 *) | 2.812 (0.14) | 10.357 (0.027 *) | 0.802 (0.72) | 1.964 (0.31) | 12.048 (<0.001 *) | 7.661 (0.006 *) | Inf (<0.001 *) | 4.978 (0.06) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bezzi, C.; Ironi, G.; Russo, T.; Candotti, G.; Fallanca, F.; Sabini, C.; Samanes Gajate, A.M.; Ghezzo, S.; Bergamini, A.; Sant’Angelo, M.; et al. [18F]FDG PET/MRI in Endometrial Cancer: Prospective Evaluation of Preoperative Staging, Molecular Characterization and Prognostic Assessment. Cancers 2026, 18, 280. https://doi.org/10.3390/cancers18020280
Bezzi C, Ironi G, Russo T, Candotti G, Fallanca F, Sabini C, Samanes Gajate AM, Ghezzo S, Bergamini A, Sant’Angelo M, et al. [18F]FDG PET/MRI in Endometrial Cancer: Prospective Evaluation of Preoperative Staging, Molecular Characterization and Prognostic Assessment. Cancers. 2026; 18(2):280. https://doi.org/10.3390/cancers18020280
Chicago/Turabian StyleBezzi, Carolina, Gabriele Ironi, Tommaso Russo, Giorgio Candotti, Federico Fallanca, Carlotta Sabini, Ana Maria Samanes Gajate, Samuele Ghezzo, Alice Bergamini, Miriam Sant’Angelo, and et al. 2026. "[18F]FDG PET/MRI in Endometrial Cancer: Prospective Evaluation of Preoperative Staging, Molecular Characterization and Prognostic Assessment" Cancers 18, no. 2: 280. https://doi.org/10.3390/cancers18020280
APA StyleBezzi, C., Ironi, G., Russo, T., Candotti, G., Fallanca, F., Sabini, C., Samanes Gajate, A. M., Ghezzo, S., Bergamini, A., Sant’Angelo, M., Bocciolone, L., Brembilla, G., Scifo, P., Taccagni, G., Catalano, O. A., Mangili, G., Candiani, M., De Cobelli, F., Chiti, A., ... Picchio, M. (2026). [18F]FDG PET/MRI in Endometrial Cancer: Prospective Evaluation of Preoperative Staging, Molecular Characterization and Prognostic Assessment. Cancers, 18(2), 280. https://doi.org/10.3390/cancers18020280

