From Sample to Sequencing: The Importance of Pre-Analytical Sample Treatment in NGS Analysis of Patients with Chronic Lymphocytic Leukemia
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation of Mononuclear Cells and Determination of CLL B Lymphocyte Percentage
2.2. Isolation of CD19+ Cells
2.3. DNA Extraction
2.4. Library Preparation and Sequencing
2.5. Bioinformatic Data Processing and Variant Interpretation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sobczyńska-Konefał, A.; Jasek, M.; Karabon, L.; Jaskuła, E. Insights into genetic aberrations and signalling pathway interactions in chronic lymphocytic leukemia: From pathogenesis to treatment strategies. Biomark. Res. 2024, 12, 162. [Google Scholar] [CrossRef]
- Eichhorst, B.; Robak, T.; Montserrat, E.; Ghia, P.; Niemann, C.U.; Kater, A.P.; Gregor, M.; Cymbalista, F.; Buske, C.; Hillmen, P.; et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 23–33. [Google Scholar] [CrossRef]
- Fabbri, G.; Dalla-Favera, R. The molecular pathogenesis of chronic lymphocytic leukaemia. Nat. Rev. Cancer 2016, 16, 145–162. [Google Scholar] [CrossRef]
- Soussi, T.; Baliakas, P. Landscape of TP53 alterations in chronic lymphocytic leukemia via data mining mutation databases. Front. Oncol. 2022, 12, 808886. [Google Scholar] [CrossRef]
- Provan, D.; Lazarus, H.M. (Eds.) Molecular Hematology, 5th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2024. [Google Scholar]
- Kipps, T.J.; Stevenson, F.K.; Wu, C.J.; Croce, C.M.; Packham, G.; Wierda, W.G.; O’Brien, S.; Gribben, J.; Rai, K. Chronic lymphocytic leukaemia. Nat. Rev. Dis. Primer. 2017, 3, 16096. [Google Scholar] [CrossRef]
- Catherwood, M.A.; Gonzalez, D.; Donaldson, D.; Clifford, R.; Mills, K.; Thornton, P. Relevance of TP53 for CLL diagnostics. J. Clin. Pathol. 2019, 72, 343–346. [Google Scholar] [CrossRef]
- Alsolami, R.; Knight, S.J.; Schuh, A. Clinical application of targeted and genome-wide technologies: Can. we predict treatment responses in chronic lymphocytic leukemia? Pers. Med. 2013, 10, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Campo, E.; Cymbalista, F.; Ghia, P.; Jäger, U.; Pospisilova, S.; Rosenquist, R.; Schuh, A.; Stilgenbauer, S. TP53 aberrations in chronic lymphocytic leukemia: An overview of the clinical implications of improved diagnostics. Haematologica 2018, 103, 1956–1968. [Google Scholar] [CrossRef]
- Moia, R.; Boggione, P.; Mahmoud, A.M.; Kodipad, A.A.; Adhinaveni, R.; Sagiraju, S.; Patriarca, A.; Gaidano, G. Targeting p53 in chronic lymphocytic leukemia. Expert Opin. Ther. Targets 2020, 24, 1239–1250. [Google Scholar] [CrossRef]
- Moreno, C.; Muñoz, C.; Terol, M.J.; Hernández-Rivas, J.Á.; Villanueva, M. Restoration of the immune function as a complementary strategy to treat chronic lymphocytic leukemia effectively. J. Exp. Clin. Cancer Res. Cancer Res. 2021, 40, 321. [Google Scholar] [CrossRef]
- Malcikova, J.; Tausch, E.; Rossi, D.; Sutton, L.A.; Soussi, T.; Zenz, T.; Kater, A.P.; Niemann, C.U.; Gonzalez, D.; Davi, F.; et al. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia-update on methodological approaches and results interpretation. Leukemia 2018, 32, 1070–1080. [Google Scholar] [CrossRef]
- Malcikova, J.; Pavlova, S.; Baliakas, P.; Chatzikonstantinou, T.; Tausch, E.; Catherwood, M.; Rossi, D.; Soussi, T.; Tichy, B.; Kater, A.P.; et al. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia—2024 update. Leukemia 2024, 38, 1455–1468. [Google Scholar] [CrossRef]
- Tikkanen, T.; Leroy, B.; Fournier, J.L.; Risques, R.A.; Malcikova, J.; Soussi, T. Seshat: A Web service for accurate annotation, validation, and analysis of TP53 variants generated by conventional and next-generation sequencing. Hum. Mutat. 2018, 39, 925–933. [Google Scholar] [CrossRef]
- Thorvaldsdóttir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 2013, 14, 178–192. [Google Scholar] [CrossRef]
- Robinson, J.T.; Thorvaldsdóttir, H.; Wenger, A.M.; Zehir, A.; Mesirov, J.P. Variant review with the Integrative Genomics Viewer. Cancer Res. 2017, 77, e31–e34. [Google Scholar] [CrossRef]
- Eichhorst, B.; Ghia, P.; Niemann, C.U.; Kater, A.P.; Gregor, M.; Hallek, M.; Jerkeman, M.; Buske, C.; ESMO Guidelines Committee. ESMO clinical practice guideline interim update on new targeted therapies in the first line and at relapse of chronic lymphocytic leukaemia. Ann. Oncol. 2024, 35, 762–768. [Google Scholar] [CrossRef]
- Radić Antolic, M.; Kolundžić, M.; Gizdić, B.; Arić Zrna, I.; Zubčić, K.; Suver Stević, M.; Marczi, S.; Kušec, R.; Hofman, I.D.; Zadro, R. Smjernice za Molekularno-Dijagnostički Postupak Sekvenciranja Nove Generacije (NGS)—Radna Skupina za Laboratorijsko-Dijagnostičku Hematologiju Krohema–2025. Godina. Available online: https://www.krohem.hr/2025/05/14/novi-bilten-krohem-a-svibanj-2025 (accessed on 2 June 2025).
- Roy, S.; Coldren, C.; Karunamurthy, A.; Kip, N.S.; Klee, E.W.; Lincoln, S.E.; Leon, A.; Pullambhatla, M.; Temple-Smolkin, R.L.; Voelkerding, K.V.; et al. Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: A Joint recommendation of the Association for Molecular Pathology and the College of American Pathologists. J. Mol. Diagn. 2018, 20, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Rehm, H.L.; Bale, S.J.; Bayrak-Toydemir, P.; Berg, J.S.; Brown, K.K.; Deignan, J.L.; Friez, M.J.; Funke, B.H.; Hegde, M.R.; Lyon, E.; et al. ACMG clinical laboratory standards for next-generation sequencing. Genet. Med. Off. J. Am. Coll. Med. Genet. 2013, 15, 733–747. [Google Scholar] [CrossRef] [PubMed]
- Hume, S.; Nelson, T.N.; Speevak, M.; McCready, E.; Agatep, R.; Feilotter, H.; Parboosingh, J.; Stavropoulos, D.J.; Taylor, S.; Stockley, T.L. On behalf of Canadian College of Medical Geneticists (CCMG). CCMG practice guideline: Laboratory guidelines for next-generation sequencing. J. Med. Genet. 2019, 56, 792–800. [Google Scholar] [CrossRef]
- Aziz, N.; Zhao, Q.; Bry, L.; Driscoll, D.K.; Funke, B.; Gibson, J.S.; Grody, W.W.; Hegde, M.R.; Hoeltge, G.A.; Leonard, D.G.B.; et al. College of American Pathologists’ Laboratory standards for next-generation sequencing clinical tests. Arch. Pathol. Lab. Med. 2015, 139, 481–493. [Google Scholar] [CrossRef]
- Jennings, L.J.; Arcila, M.E.; Corless, C.; Kamel-Reid, S.; Lubin, I.M.; Pfeifer, J.; Temple-Smolkin, R.L.; Voelkerding, K.V.; Nikiforova, M.N. Guidelines for validation of next-generation sequencing–based oncology panels. J. Mol. Diagn. 2017, 19, 341–365. [Google Scholar] [CrossRef]
- Malcikova, J.; Pavlova, S.; Kozubik, K.S.; Pospisilova, S. TP53 mutation analysis in clinical practice: Lessons from chronic lymphocytic leukemia. Hum. Mutat. 2014, 35, 663–671. [Google Scholar] [CrossRef]
- Pandzic, T.; Ladenvall, C.; Engvall, M.; Mattsson, M.; Hermanson, M.; Cavelier, L.; Viktor, L.; Panagiotis, B. Five percent variant allele frequency Is a reliable reporting threshold for TP53 variants detected by next generation sequencing in chronic lymphocytic leukemia in the clinical setting. HemaSphere 2022, 6, e761. [Google Scholar] [CrossRef] [PubMed]
- Malcikova, J.; Pavlova, S.; Kunt Vonkova, B.; Radova, L.; Plevova, K.; Kotaskova, J.; Pal, K.; Dvorackova, B.; Zenatova, M.; Hynst, J.; et al. Low-burden TP53 mutations in CLL: Linical impact and clonal evolution within the context of different treatment options. Blood 2021, 138, 2670–2685. [Google Scholar] [CrossRef]
- Lazarian, G.; Cymbalista, F.; Baran-Marszak, F. Impact of low-burden TP53 mutations in the management of CLL. Front. Oncol. 2022, 12, 841630. [Google Scholar] [CrossRef] [PubMed]
- László, T.; Kotmayer, L.; Fésüs, V.; Hegyi, L.; Gróf, S.; Nagy, Á.; Kajtár, B.; Balogh, A.; Weisinger, J.; Masszi, T.; et al. Low-burden TP53 mutations represent frequent genetic events in CLL with an increased risk for treatment initiation. J. Pathol. Clin. Res. 2024, 10, e351. [Google Scholar] [CrossRef] [PubMed]
- Zenz, T.; Eichhorst, B.; Busch, R.; Denzel, T.; Häbe, S.; Winkler, D.; Bühler, A.; Edelmann, J.; Bergmann, M.; Hopfinger, G.; et al. TP53 mutation and survival in chronic lymphocytic leukemia. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 4473–4479. [Google Scholar] [CrossRef]
- Rossi, D.; Khiabanian, H.; Spina, V.; Ciardullo, C.; Bruscaggin, A.; Famà, R.; Rasi, S.; Monti, S.; Deambrogi, C.; De Paoli, L.; et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood 2014, 123, 2139–2147. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Zhang, C.; Tandon, M.; Sinha, A.; Fink, A.M.; Robrecht, S.; Samoylova, O.; Liberati, A.M.; Pinilla-Ibarz, J.; Opat, S.; et al. Venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (CLL14): Follow-up results from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2020, 21, 1188–1200. [Google Scholar] [CrossRef]
- Braish, J.; Cerchione, C.; Ferrajoli, A. An overview of prognostic markers in patients with CLL. Front. Oncol. 2024, 14, 1371057. [Google Scholar] [CrossRef]
- Hallek, M. Chronic lymphocytic leukemia: 2025 update on the epidemiology, pathogenesis, diagnosis, and therapy. Am. J. Hematol. 2025, 100, 450–480. [Google Scholar] [CrossRef] [PubMed]
- Ahn, I.E.; Tian, X.; Wiestner, A. Ibrutinib for chronic lymphocytic leukemia with TP53 alterations. N. Eng. J. Med. 2020, 383, 498–500. [Google Scholar] [CrossRef] [PubMed]
| Parameter | CLL1 * | CLL2 + |
|---|---|---|
| Total aligned reads per sample # | 4,919,644 | 5,469,312 |
| Percent Q30 Bases | 91.89% | 90.78% |
| Mean Target Coverage Depth | 2117.4 | 2533.9 |
| Uniformity of Coverage (Pct > 0.2 mean) | 98.53% | 98.71% |
| Sample | ||||
|---|---|---|---|---|
| CLL1 | CLL2 | |||
| VAF (%) | Number of Variant Reads/Total Number of Sequencing Reads at Specific Nucleotide Position | VAF (%) | Number of Variant Reads/Total Number of Sequencing Reads at Specific Nucleotide Position | |
| c.626_627del,p.(R209Kfs*6) | 57.06 | 489/857 | 94.78 | 836/882 |
| c.825_826del,p.(A276Lfs*29) | - | - | 1.59 | 14/881 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suver Stević, M.; Holik, H.; Periša, V.; Marczi, S.; Kolobarić, N.; Samardžija, M. From Sample to Sequencing: The Importance of Pre-Analytical Sample Treatment in NGS Analysis of Patients with Chronic Lymphocytic Leukemia. Cancers 2025, 17, 3668. https://doi.org/10.3390/cancers17223668
Suver Stević M, Holik H, Periša V, Marczi S, Kolobarić N, Samardžija M. From Sample to Sequencing: The Importance of Pre-Analytical Sample Treatment in NGS Analysis of Patients with Chronic Lymphocytic Leukemia. Cancers. 2025; 17(22):3668. https://doi.org/10.3390/cancers17223668
Chicago/Turabian StyleSuver Stević, Mirjana, Hrvoje Holik, Vlatka Periša, Saška Marczi, Nikolina Kolobarić, and Marina Samardžija. 2025. "From Sample to Sequencing: The Importance of Pre-Analytical Sample Treatment in NGS Analysis of Patients with Chronic Lymphocytic Leukemia" Cancers 17, no. 22: 3668. https://doi.org/10.3390/cancers17223668
APA StyleSuver Stević, M., Holik, H., Periša, V., Marczi, S., Kolobarić, N., & Samardžija, M. (2025). From Sample to Sequencing: The Importance of Pre-Analytical Sample Treatment in NGS Analysis of Patients with Chronic Lymphocytic Leukemia. Cancers, 17(22), 3668. https://doi.org/10.3390/cancers17223668

