Whole-Exome Sequencing-Based Linkage Analysis of Multiple Myeloma (MM) and Monoclonal Gammopathy of Undetermined Significance (MGUS) Pedigrees
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CNV | Copy Number Variant |
| CTCL | Cutaneous T-cell Lymphoma |
| DHS | DNase I Hypersensitive Site |
| EA | European Ancestry/European American |
| GC | Genomic Control |
| GDPR | General Data Protection Regulation |
| GATK | Genome Analysis Toolkit |
| GWAS | Genome-Wide Association Study |
| HLOD | Heterogeneity Logarithm of the Odds |
| HMM | Hidden Markov Model |
| IL | Interleukin |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
| LD | Linkage Disequilibrium |
| LOD | Logarithm of the Odds |
| MGUS | Monoclonal Gammopathy of Undetermined Significance |
| MM | Multiple Myeloma |
| NPL | Non-Parametric Linkage |
| OR | Odds Ratio |
| ORA | Over Representation Analysis |
| PathoMAN | Pathogenicity of Mutation Analyzer |
| PLINK | Whole-Genome Association Toolset |
| PolyPhen-2 | Polymorphism Phenotyping v2 |
| QC | Quality Control |
| SNP | Single-Nucleotide Polymorphism |
| SIFT | Sorting Intolerant From Tolerant |
| TNF-α | Tumor Necrosis Factor Alpha |
| TOPMed | Trans-Omics for Precision Medicine |
| TSS | Transcription Start Site |
| UTR | Untranslated Region |
| VEP | Variant Effect Predictor |
| WES | Whole-Exome Sequencing |
| WebGestalt | WEB-based Gene Set Analysis Toolkit |
References
- Dhodapkar, M.V. MGUS to myeloma: A mysterious gammopathy of underexplored significance. Blood 2016, 128, 2599–2606. [Google Scholar] [CrossRef] [PubMed]
- Laubach, J.P. Multiple Myeloma: Clinical Features, Laboratory Manifestations, and Diagnosis; UpToDate: Waltham, MA, USA, 2020. [Google Scholar]
- Rajkumar, S.V. Multiple myeloma. Curr. Probl. Cancer 2009, 33, 7–64. [Google Scholar] [CrossRef]
- Alexander, D.D.; Mink, P.J.; Adami, H.O.; Cole, P.; Mandel, J.S.; Oken, M.M.; Trichopoulos, D. Multiple myeloma: A review of the epidemiologic literature. Int. J. Cancer 2007, 120 (Suppl. 12), 40–61. [Google Scholar] [CrossRef]
- Bizzaro, N.; Pasini, P. Familial occurrence of multiple myeloma and monoclonal gammopathy of undetermined significance in 5 siblings. Haematologica 1990, 75, 58–63. [Google Scholar]
- Bourguet, C.C.; Grufferman, S.; Delzell, E.; DeLong, E.R.; Cohen, H.J. Multiple myeloma and family history of cancer. A case-control study. Cancer 1985, 56, 2133–2139. [Google Scholar] [CrossRef]
- Brown, L.M.; Linet, M.S.; Greenberg, R.S.; Silverman, D.T.; Hayes, R.B.; Swanson, G.M.; Schwartz, A.G.; Schoenberg, J.B.; Pottern, L.M.; Fraumeni, J.F., Jr. Multiple myeloma and family history of cancer among blacks and whites in the U.S. Cancer 1999, 85, 2385–2390. [Google Scholar] [CrossRef]
- Camp, N.J.; Werner, T.L.; Cannon-Albright, L.A. Familial myeloma. N. Engl. J. Med. 2008, 359, 1734–1735. [Google Scholar] [CrossRef]
- Clay-Gilmour, A.I.; Kumar, S.; Rajkumar, S.V.; Rishi, A.; Kyle, R.A.; Katzmann, J.A.; Murray, D.L.; Norman, A.D.; Greenberg, A.J.; Larson, D.R.; et al. Risk of MGUS in relatives of multiple myeloma cases by clinical and tumor characteristics. Leukemia 2019, 33, 499–507. [Google Scholar] [CrossRef]
- Eriksson, M.; Hallberg, B. Familial occurrence of hematologic malignancies and other diseases in multiple myeloma: A case-control study. Cancer Causes Control 1992, 3, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Frank, C.; Fallah, M.; Chen, T.; Mai, E.K.; Sundquist, J.; Forsti, A.; Hemminki, K. Search for familial clustering of multiple myeloma with any cancer. Leukemia 2016, 30, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Goldgar, D.E.; Easton, D.F.; Cannon-Albright, L.A.; Skolnick, M.H. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J. Natl. Cancer Inst. 1994, 86, 1600–1608. [Google Scholar] [CrossRef] [PubMed]
- Judson, I.R.; Wiltshaw, E.; Newland, A.C. Multiple myeloma in a pair of monozygotic twins: The first reported case. Br. J. Haematol. 1985, 60, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Kristinsson, S.Y.; Bjorkholm, M.; Goldin, L.R.; Blimark, C.; Mellqvist, U.H.; Wahlin, A.; Turesson, I.; Landgren, O. Patterns of hematologic malignancies and solid tumors among 37,838 first-degree relatives of 13,896 patients with multiple myeloma in Sweden. Int. J. Cancer 2009, 125, 2147–2150. [Google Scholar] [CrossRef]
- Landgren, O.; Kristinsson, S.Y.; Goldin, L.R.; Caporaso, N.E.; Blimark, C.; Mellqvist, U.H.; Wahlin, A.; Bjorkholm, M.; Turesson, I. Risk of plasma cell and lymphoproliferative disorders among 14621 first-degree relatives of 4458 patients with monoclonal gammopathy of undetermined significance in Sweden. Blood 2009, 114, 791–795. [Google Scholar] [CrossRef]
- Landgren, O.; Linet, M.S.; McMaster, M.L.; Gridley, G.; Hemminki, K.; Goldin, L.R. Familial characteristics of autoimmune and hematologic disorders in 8,406 multiple myeloma patients: A population-based case-control study. Int. J. Cancer 2006, 118, 3095–3098. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.T.; Ferrara, K.; Barlogie, B.; Coleman, E.A.; Lynch, J.F.; Weisenburger, D.; Sanger, W.; Watson, P.; Nipper, H.; Witt, V.; et al. Familial myeloma. N. Engl. J. Med. 2008, 359, 152–157. [Google Scholar] [CrossRef]
- Lynch, H.T.; Sanger, W.G.; Pirruccello, S.; Quinn-Laquer, B.; Weisenburger, D.D. Familial multiple myeloma: A family study and review of the literature. J. Natl. Cancer Inst. 2001, 93, 1479–1483. [Google Scholar] [CrossRef]
- Lynch, H.T.; Watson, P.; Tarantolo, S.; Wiernik, P.H.; Quinn-Laquer, B.; Isgur Bergsagel, K.; Huiart, L.; Olopade, O.I.; Sobol, H.; Sanger, W.; et al. Phenotypic heterogeneity in multiple myeloma families. J. Clin. Oncol. 2005, 23, 685–693. [Google Scholar] [CrossRef]
- Ogmundsdottir, H.M.; Einarsdottir, H.K.; Steingrimsdottir, H.; Haraldsdottir, V. Familial predisposition to monoclonal gammopathy of unknown significance, Waldenstrom’s macroglobulinemia, and multiple myeloma. Clin. Lymphoma Myeloma 2009, 9, 27–29. [Google Scholar] [CrossRef]
- Ogmundsdottir, H.M.; Haraldsdottirm, V.; Johannesson, G.M.; Olafsdottir, G.; Bjarnadottir, K.; Sigvaldason, H.; Tulinius, H. Familiality of benign and malignant paraproteinemias. A population-based cancer-registry study of multiple myeloma families. Haematologica 2005, 90, 66–71. [Google Scholar]
- Vachon, C.M.; Kyle, R.A.; Therneau, T.M.; Foreman, B.J.; Larson, D.R.; Colby, C.L.; Phelps, T.K.; Dispenzieri, A.; Kumar, S.K.; Katzmann, J.A.; et al. Increased risk of monoclonal gammopathy in first-degree relatives of patients with multiple myeloma or monoclonal gammopathy of undetermined significance. Blood 2009, 114, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Zawadzki, Z.A.; Aizawa, Y.; Kraj, M.A.; Haradin, A.R.; Fisher, B. Familial immunopathies: Report of nine families and survey of literature. Cancer 1977, 40, 2094–2101. [Google Scholar] [CrossRef]
- Greenberg, A.J.; Rajkumar, S.V.; Vachon, C.M. Familial monoclonal gammopathy of undetermined significance and multiple myeloma: Epidemiology, risk factors, and biological characteristics. Blood 2012, 119, 5359–5366. [Google Scholar] [CrossRef]
- Broderick, P.; Chubb, D.; Johnson, D.C.; Weinhold, N.; Forsti, A.; Lloyd, A.; Olver, B.; Ma, Y.; Dobbins, S.E.; Walker, B.A.; et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nat. Genet. 2011, 44, 58–61. [Google Scholar] [CrossRef]
- Chubb, D.; Weinhold, N.; Broderick, P.; Chen, B.; Johnson, D.C.; Forsti, A.; Vijayakrishnan, J.; Migliorini, G.; Dobbins, S.E.; Holroyd, A.; et al. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk. Nat. Genet. 2013, 45, 1221–1225. [Google Scholar] [CrossRef]
- Mitchell, J.S.; Li, N.; Weinhold, N.; Forsti, A.; Ali, M.; van Duin, M.; Thorleifsson, G.; Johnson, D.C.; Chen, B.; Halvarsson, B.M.; et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat. Commun. 2016, 7, 12050. [Google Scholar] [CrossRef]
- Swaminathan, B.; Thorleifsson, G.; Joud, M.; Ali, M.; Johnsson, E.; Ajore, R.; Sulem, P.; Halvarsson, B.M.; Eyjolfsson, G.; Haraldsdottir, V.; et al. Variants in ELL2 influencing immunoglobulin levels associate with multiple myeloma. Nat. Commun. 2015, 6, 7213. [Google Scholar] [CrossRef] [PubMed]
- Went, M.; Duran-Lozano, L.; Halldorsson, G.H.; Gunnell, A.; Ugidos-Damboriena, N.; Law, P.; Ekdahl, L.; Sud, A.; Thorleifsson, G.; Thodberg, M.; et al. Deciphering the genetics and mechanisms of predisposition to multiple myeloma. Nat. Commun. 2024, 15, 6644. [Google Scholar] [CrossRef]
- Went, M.; Sud, A.; Forsti, A.; Halvarsson, B.M.; Weinhold, N.; Kimber, S.; van Duin, M.; Thorleifsson, G.; Holroyd, A.; Johnson, D.C.; et al. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat. Commun. 2018, 9, 3707. [Google Scholar] [CrossRef]
- Thomsen, H.; Campo, C.; Weinhold, N.; da Silva Filho, M.I.; Pour, L.; Gregora, E.; Vodicka, P.; Vodickova, L.; Hoffmann, P.; Nothen, M.M.; et al. Genomewide association study on monoclonal gammopathy of unknown significance (MGUS). Eur. J. Haematol. 2017, 99, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, H.; Chattopadhyay, S.; Weinhold, N.; Vodicka, P.; Vodickova, L.; Hoffmann, P.; Nothen, M.M.; Jockel, K.H.; Langer, C.; Hajek, R.; et al. Genome-wide association study of monoclonal gammopathy of unknown significance (MGUS): Comparison with multiple myeloma. Leukemia 2019, 33, 1817–1821. [Google Scholar] [CrossRef]
- Clay-Gilmour, A.I.; Hildebrandt, M.A.T.; Brown, E.E.; Hofmann, J.N.; Spinelli, J.J.; Giles, G.G.; Cozen, W.; Bhatti, P.; Wu, X.; Waller, R.G.; et al. Co-inherited genetics of multiple myeloma and its precursor, monoclonal gammopathy of undetermined significance. Blood Adv. 2020, 4, 2789–2797. [Google Scholar] [CrossRef]
- McClellan, J.; King, M.C. Genetic heterogeneity in human disease. Cell 2010, 141, 210–217. [Google Scholar] [CrossRef]
- Mitchell, K.J. What is complex about complex disorders? Genome Biol. 2012, 13, 237. [Google Scholar] [CrossRef] [PubMed]
- Eichler, E.E.; Flint, J.; Gibson, G.; Kong, A.; Leal, S.M.; Moore, J.H.; Nadeau, J.H. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 2010, 11, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Maher, B. Personal genomes: The case of the missing heritability. Nature 2008, 456, 18–21. [Google Scholar] [CrossRef]
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; Chakravarti, A.; et al. Finding the missing heritability of complex diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef]
- Cannon-Albright, L.A.; Goldgar, D.E.; Meyer, L.J.; Lewis, C.M.; Anderson, D.E.; Fountain, J.W.; Hegi, M.E.; Wiseman, R.W.; Petty, E.M.; Bale, A.E.; et al. Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p22. Science 1992, 258, 1148–1152. [Google Scholar] [CrossRef]
- Leppert, M.; Dobbs, M.; Scambler, P.; O’Connell, P.; Nakamura, Y.; Stauffer, D.; Woodward, S.; Burt, R.; Hughes, J.; Gardner, E.; et al. The gene for familial polyposis coli maps to the long arm of chromosome 5. Science 1987, 238, 1411–1413. [Google Scholar] [CrossRef] [PubMed]
- Miki, Y.; Swensen, J.; Shattuck-Eidens, D.; Futreal, P.A.; Harshman, K.; Tavtigian, S.; Liu, Q.; Cochran, C.; Bennett, L.M.; Ding, W.; et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994, 266, 66–71. [Google Scholar] [CrossRef]
- Ng, S.B.; Bigham, A.W.; Buckingham, K.J.; Hannibal, M.C.; McMillin, M.J.; Gildersleeve, H.I.; Beck, A.E.; Tabor, H.K.; Cooper, G.M.; Mefford, H.C.; et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. 2010, 42, 790–793. [Google Scholar] [CrossRef]
- Ng, S.B.; Buckingham, K.J.; Lee, C.; Bigham, A.W.; Tabor, H.K.; Dent, K.M.; Huff, C.D.; Shannon, P.T.; Jabs, E.W.; Nickerson, D.A.; et al. Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet. 2010, 42, 30–35. [Google Scholar] [CrossRef]
- Nishisho, I.; Nakamura, Y.; Miyoshi, Y.; Miki, Y.; Ando, H.; Horii, A.; Koyama, K.; Utsunomiya, J.; Baba, S.; Hedge, P. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991, 253, 665–669. [Google Scholar] [CrossRef]
- Vance, J.M.; Pericak-Vance, M.A.; Yamaoka, L.H.; Speer, M.C.; Rosenwasser, G.O.; Small, K.; Gaskell, P.C., Jr.; Hung, W.Y.; Alberts, M.J.; Haynes, C.S.; et al. Genetic linkage mapping of chromosome 17 markers and neurofibromatosis type I. Am. J. Hum. Genet. 1989, 44, 25–29. [Google Scholar] [PubMed]
- Wooster, R.; Neuhausen, S.L.; Mangion, J.; Quirk, Y.; Ford, D.; Collins, N.; Nguyen, K.; Seal, S.; Tran, T.; Averill, D.; et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 1994, 265, 2088–2090. [Google Scholar] [CrossRef] [PubMed]
- Scales, M.; Chubb, D.; Dobbins, S.E.; Johnson, D.C.; Li, N.; Sternberg, M.J.; Weinhold, N.; Stein, C.; Jackson, G.; Davies, F.E.; et al. Search for rare protein altering variants influencing susceptibility to multiple myeloma. Oncotarget 2017, 8, 36203–36210. [Google Scholar] [CrossRef]
- Waller, R.G.; Darlington, T.M.; Wei, X.; Madsen, M.J.; Thomas, A.; Curtin, K.; Coon, H.; Rajamanickam, V.; Musinsky, J.; Jayabalan, D.; et al. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk. PLoS Genet. 2018, 14, e1007111. [Google Scholar] [CrossRef]
- Dilworth, D.; Liu, L.; Stewart, A.K.; Berenson, J.R.; Lassam, N.; Hogg, D. Germline CDKN2A mutation implicated in predisposition to multiple myeloma. Blood 2000, 95, 1869–1871. [Google Scholar] [CrossRef]
- Pertesi, M.; Vallee, M.; Wei, X.; Revuelta, M.V.; Galia, P.; Demangel, D.; Oliver, J.; Foll, M.; Chen, S.; Perrial, E.; et al. Exome sequencing identifies germline variants in DIS3 in familial multiple myeloma. Leukemia 2019, 33, 2324–2330. [Google Scholar] [CrossRef]
- Wei, X.; Calvo-Vidal, M.N.; Chen, S.; Wu, G.; Revuelta, M.V.; Sun, J.; Zhang, J.; Walsh, M.F.; Nichols, K.E.; Joseph, V.; et al. Germline Lysine-Specific Demethylase 1 (LSD1/KDM1A) Mutations Confer Susceptibility to Multiple Myeloma. Cancer Res. 2018, 78, 2747–2759. [Google Scholar] [CrossRef] [PubMed]
- Waller, R.G.; Klein, R.J.; Vijai, J.; McKay, J.D.; Clay-Gilmour, A.; Wei, X.; Madsen, M.J.; Sborov, D.W.; Curtin, K.; Slager, S.L.; et al. Sequencing at lymphoid neoplasm susceptibility loci maps six myeloma risk genes. Hum. Mol. Genet. 2021, 30, 1142–1153. [Google Scholar] [CrossRef]
- Catalano, C.; Paramasivam, N.; Blocka, J.; Giangiobbe, S.; Huhn, S.; Schlesner, M.; Weinhold, N.; Sijmons, R.; de Jong, M.; Langer, C.; et al. Characterization of rare germline variants in familial multiple myeloma. Blood Cancer J. 2021, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Niazi, Y.; Paramasivam, N.; Blocka, J.; Kumar, A.; Huhn, S.; Schlesner, M.; Weinhold, N.; Sijmons, R.; De Jong, M.; Durie, B.; et al. Investigation of Rare Non-Coding Variants in Familial Multiple Myeloma. Cells 2022, 12, 96. [Google Scholar] [CrossRef]
- Albert, F.W.; Kruglyak, L. The role of regulatory variation in complex traits and disease. Nat. Rev. Genet. 2015, 16, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Montgomery, S.B. Detection and impact of rare regulatory variants in human disease. Front. Genet. 2013, 4, 67. [Google Scholar] [CrossRef]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.11–11.10.33. [Google Scholar] [CrossRef]
- Abecasis, G.R.; Cherny, S.S.; Cookson, W.O.; Cardon, L.R. Merlin—Rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 2002, 30, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Kruglyak, L.; Daly, M.J.; Reeve-Daly, M.P.; Lander, E.S. Parametric and nonparametric linkage analysis: A unified multipoint approach. Am. J. Hum. Genet. 1996, 58, 1347–1363. [Google Scholar]
- Kong, A.; Cox, N.J. Allele-sharing models: LOD scores and accurate linkage tests. Am. J. Hum. Genet. 1997, 61, 1179–1188. [Google Scholar] [CrossRef]
- Barnard, G.A. Statistical inference. J. R. Stat. Society Ser. B 1949, 11, 115–139. [Google Scholar] [CrossRef]
- Sinnwell, J.P.; Therneau, T.M.; Schaid, D.J. The kinship2 R package for pedigree data. Hum. Hered. 2014, 78, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Lander, E.; Kruglyak, L. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat. Genet. 1995, 11, 241–247. [Google Scholar] [CrossRef]
- Vachon, C.M.; Sellers, T.A.; Carlson, E.E.; Cunningham, J.M.; Hilker, C.A.; Smalley, R.L.; Schaid, D.J.; Kelemen, L.E.; Couch, F.J.; Pankratz, V.S. Strong evidence of a genetic determinant for mammographic density, a major risk factor for breast cancer. Cancer Res. 2007, 67, 8412–8418. [Google Scholar] [CrossRef] [PubMed]
- Olson, J.E.; Ryu, E.; Johnson, K.J.; Koenig, B.A.; Maschke, K.J.; Morrisette, J.A.; Liebow, M.; Takahashi, P.Y.; Fredericksen, Z.S.; Sharma, R.G.; et al. The Mayo Clinic Biobank: A building block for individualized medicine. Mayo Clin. Proc. 2013, 88, 952–962. [Google Scholar] [CrossRef]
- Ravichandran, V.; Shameer, Z.; Kemel, Y.; Walsh, M.; Cadoo, K.; Lipkin, S.; Mandelker, D.; Zhang, L.; Stadler, Z.; Robson, M.; et al. Toward automation of germline variant curation in clinical cancer genetics. Genet. Med. 2019, 21, 2116–2125. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef]
- Breeze, C.E.; Haugen, E.; Reynolds, A.; Teschendorff, A.; van Dongen, J.; Lan, Q.; Rothman, N.; Bourque, G.; Dunham, I.; Beck, S.; et al. Integrative analysis of 3604 GWAS reveals multiple novel cell type-specific regulatory associations. Genome Biol. 2022, 23, 13. [Google Scholar] [CrossRef]
- Zhang, B.; Kirov, S.A.; Snoddy, J.R. WebGestalt: An integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 2005, 33, W741–W748. [Google Scholar] [CrossRef]
- Rasi, S.; Spina, V.; Bruscaggin, A.; Vaisitti, T.; Tripodo, C.; Forconi, F.; De Paoli, L.; Fangazio, M.; Sozzi, E.; Cencini, E.; et al. A variant of the LRP4 gene affects the risk of chronic lymphocytic leukaemia transformation to Richter syndrome. Br. J. Haematol. 2011, 152, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhao, Y.; Chan, W.Y.; Vercauteren, S.; Pang, E.; Kennedy, S.; Nicolini, F.; Eaves, A.; Eaves, C. Deregulated expression in Ph+ human leukemias of AHI-1, a gene activated by insertional mutagenesis in mouse models of leukemia. Blood 2004, 103, 3897–3904. [Google Scholar] [CrossRef] [PubMed]
- Ringrose, A.; Zhou, Y.; Pang, E.; Zhou, L.; Lin, A.E.; Sheng, G.; Li, X.J.; Weng, A.; Su, M.W.; Pittelkow, M.R.; et al. Evidence for an oncogenic role of AHI-1 in Sezary syndrome, a leukemic variant of human cutaneous T-cell lymphomas. Leukemia 2006, 20, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Jourdan, M.; Tarte, K.; Legouffe, E.; Brochier, J.; Rossi, J.F.; Klein, B. Tumor necrosis factor is a survival and proliferation factor for human myeloma cells. Eur. Cytokine Netw. 1999, 10, 65–70. [Google Scholar]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef]
- Bartucci, R.; Salvati, A.; Olinga, P.; Boersma, Y.L. Vanin 1: Its Physiological Function and Role in Diseases. Int. J. Mol. Sci. 2019, 20, 3891. [Google Scholar] [CrossRef]
- Besse, L.; Besse, A.; Mendez-Lopez, M.; Vasickova, K.; Sedlackova, M.; Vanhara, P.; Kraus, M.; Bader, J.; Ferreira, R.B.; Castellano, R.K.; et al. A metabolic switch in proteasome inhibitor-resistant multiple myeloma ensures higher mitochondrial metabolism, protein folding and sphingomyelin synthesis. Haematologica 2019, 104, e415–e419. [Google Scholar] [CrossRef]
- Yan, H.; Zheng, G.; Qu, J.; Liu, Y.; Huang, X.; Zhang, E.; Cai, Z. Identification of key candidate genes and pathways in multiple myeloma by integrated bioinformatics analysis. J. Cell Physiol. 2019, 234, 23785–23797. [Google Scholar] [CrossRef]
- Consortium, G.T. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [Google Scholar] [CrossRef]
- Ferreira, M.A. Linkage analysis: Principles and methods for the analysis of human quantitative traits. Twin Res. 2004, 7, 513–530. [Google Scholar] [CrossRef] [PubMed]
- Landgren, O.; Kyle, R.A.; Pfeiffer, R.M.; Katzmann, J.A.; Caporaso, N.E.; Hayes, R.B.; Dispenzieri, A.; Kumar, S.; Clark, R.J.; Baris, D.; et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: A prospective study. Blood 2009, 113, 5412–5417. [Google Scholar] [CrossRef] [PubMed]


| Familial (N = 227) | Sporadic (N = 7991) | |||||||
|---|---|---|---|---|---|---|---|---|
| MM | Early-Onset 1 MM | MGUS | Early-Onset 1 MGUS | Unaffected | MM | Early-Onset 1 MM | Controls | |
| Count (n, %) | 120 (53) | 9 (7) | 86 (38) | 9 (10) | 21 (9) | 1183 (15) | 63 (5) | 6808 (85) |
| Age at diagnosis/consent | ||||||||
| Median years (range) | 63 (39–91) | 43 (39–49) | 66 (36–88) | 44 (36–49) | 66 (35–98) | 64 (27–91) | 46 (27–47) | - |
| missing | 3 (2) | - | 4 (5) | - | 6 (29) | 547 (46) | 0 | - |
| Sex (n, %) | ||||||||
| Male | 64 (53) | 4 (44) | 44 (51) | 4 (44) | 12 (57) | - | - | - |
| Female | 55 (46) | 5 (56) | 42 (49) | 5 (56) | 9 (43) | - | - | - |
| missing | 1 (<1) | - | 0 | - | 0 | - | - | - |
| Ethnicity (n, %) | ||||||||
| European American | 112 (93) | 6 (67) | 83 (97) | 9 (100) | 20 (95) | - | - | - |
| African American | 8 (7) | 2 (33) | 3 (3) | 0 | 1 (5) | - | - | - |
| missing | 0 | - | 0 | - | 0 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clay-Gilmour, A.I.; Camp, N.J.; Wei, X.; Earle, A.; Norman, A.; Sinnwell, J.; Demangel, D.; Griffin, R.; Dumontet, C.; McKay, J.; et al. Whole-Exome Sequencing-Based Linkage Analysis of Multiple Myeloma (MM) and Monoclonal Gammopathy of Undetermined Significance (MGUS) Pedigrees. Cancers 2025, 17, 3611. https://doi.org/10.3390/cancers17223611
Clay-Gilmour AI, Camp NJ, Wei X, Earle A, Norman A, Sinnwell J, Demangel D, Griffin R, Dumontet C, McKay J, et al. Whole-Exome Sequencing-Based Linkage Analysis of Multiple Myeloma (MM) and Monoclonal Gammopathy of Undetermined Significance (MGUS) Pedigrees. Cancers. 2025; 17(22):3611. https://doi.org/10.3390/cancers17223611
Chicago/Turabian StyleClay-Gilmour, Alyssa I., Nicola J. Camp, Xiaomu Wei, Angel Earle, Aaron Norman, Jason Sinnwell, Delphine Demangel, Rosalie Griffin, Charles Dumontet, James McKay, and et al. 2025. "Whole-Exome Sequencing-Based Linkage Analysis of Multiple Myeloma (MM) and Monoclonal Gammopathy of Undetermined Significance (MGUS) Pedigrees" Cancers 17, no. 22: 3611. https://doi.org/10.3390/cancers17223611
APA StyleClay-Gilmour, A. I., Camp, N. J., Wei, X., Earle, A., Norman, A., Sinnwell, J., Demangel, D., Griffin, R., Dumontet, C., McKay, J., Offit, K., Joseph, V., Chen, S., O’Brien, D., Rajkumar, V., Klein, R., Kumar, S., Lipkin, S., & Vachon, C. M. (2025). Whole-Exome Sequencing-Based Linkage Analysis of Multiple Myeloma (MM) and Monoclonal Gammopathy of Undetermined Significance (MGUS) Pedigrees. Cancers, 17(22), 3611. https://doi.org/10.3390/cancers17223611

