Pharmacological Prevention in Breast Cancer: Current Evidence, Challenges, and Future Directions
Simple Summary
Abstract
1. Introduction: Why Prevention Matters in Modern Oncology
From Evidence to Practice: The Uptake Gap
2. Established Pharmacological Agents: The Strongest Current Evidence (SERMs and AIs)
2.1. Selective Estrogen Receptor Modulators (SERMs)
2.2. Aromatase Inhibitors (AIs)
2.3. Long-Term Efficacy and Safety Considerations of SERMS and AIs
3. Risk Stratification and Identification of Eligible Populations
3.1. Quantitative Risk Assessment Models
- Gail model (Breast Cancer Risk Assessment Tool), which estimates 5-year and lifetime risk based on age, reproductive history, family history of breast cancer, history of breast biopsies, and race/ethnicity [24,25]. A 5-year risk threshold of ≥1.66% has traditionally been used to define eligibility for tamoxifen in U.S. guidelines [26]. Although simple and easy to use, the Gail model tends to underestimate risk in women with a strong family history or hereditary syndromes and does not incorporate genetic mutations.
- Tyrer-Cuzick (IBIS) model, which incorporates additional risk factors such as body mass index, hormone replacement therapy, age at menarche and menopause, and more detailed family history including BRCA1/2 status [27,28]. This model provides both 10-year and lifetime risk estimates and is considered more comprehensive, especially for identifying women with hereditary breast cancer risk. Its integration with mammographic density data further enhances its discriminatory accuracy [29].
- BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) model, which is developed to estimate the probability of being a carrier of pathogenic variants in genes such as BRCA1, BRCA2, PALB2, CHEK2, and ATM, in addition to calculating breast and ovarian cancer risk [30,31]. With its increasing availability and integration in genetic counseling tools, BOADICEA is gaining traction as a precision risk stratification model.
3.2. Clinical Criteria for High-Risk Populations
3.3. Emerging Tools for Personalized Stratification
4. Guidelines Recommendations
5. Why Uptake Remains Low: Benefit-Risk Balance and Cost-Effectiveness
5.1. Efficacy vs. Adverse Effects
5.2. Ethical and Policy Implications
5.3. Quality of Life Considerations
6. Why Uptake Remains Low: Barriers to Clinical Implementation
6.1. Physician-Related Barriers
6.2. Patient-Related Barriers
6.3. System-Level and Structural Challenges
6.4. Legal, Ethical, and Cultural Considerations
6.5. Strategies to Improve Uptake
7. Emerging Strategies: Low-Dose Tamoxifen
8. Emerging Strategies: Ongoing Clinical Trials
9. Emerging Strategies: Future Directions in Pharmacoprevention
9.1. Selective Estrogen Receptor Degraders (SERDs)
- Elacestrant, an oral selective estrogen receptor degrader (SERD), has demonstrated significant clinical activity in ER-positive, HER2-negative, ESR1-mutant metastatic breast cancer, as shown in the EMERALD trial (NCT03778931). In this phase III study, elacestrant significantly improved progression-free survival compared to standard endocrine therapy, particularly in patients harboring ESR1 mutations, establishing it as the first oral SERD approved for use in this setting [77]. Building on these results, elacestrant is now being investigated in earlier-stage disease and prevention-oriented settings, including the ELEVATE trial (NCT05563220), a phase Ib/II umbrella study assessing elacestrant in combination with various targeted agents (e.g., CDK4/6, PI3K, and AKT inhibitors) in patients previously treated with endocrine therapy and CDK4/6 inhibitors [78]. These efforts aim to expand its potential role from metastatic disease to adjuvant and preventive applications, particularly in endocrine-sensitive tumors.
- Camizestrant, imlunestrant, and amcenestrant have demonstrated favorable pharmacokinetic properties and manageable safety profiles across Phase I–III trials, and ongoing studies are evaluating their role in both adjuvant and preventive settings. In the phase III EMBER-3 trial, the investigators enrolled patients with ER-positive, HER2-negative advanced breast cancer that recurred or progressed during or after aromatase inhibitor therapy, administered alone or with a CDK4/6 inhibitor. treatment with imlunestrant led to significantly longer progression-free survival than standard therapy among those with ESR1 mutations but not in the overall population. Imlunestrant-abemaciclib significantly improved progression-free survival as compared with imlunestrant, regardless of ESR1-mutation status [79,80].
9.2. Estrogen-Only Therapy
9.3. Targeting Non-Estrogen Pathway
9.4. Cancer Vaccines and Immunoprevention
10. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AEs | Adverse Events |
| AI | Aromatase Inhibitor |
| ASCO | American Society of Clinical Oncology |
| BC | Breast Cancer |
| BRCA | Breast Cancer Gene (BRCA1/BRCA2) |
| CBE | Clinical Breast Examination |
| CI | Confidence Interval |
| DCIS | Ductal Carcinoma In Situ |
| DNA | Deoxyribonucleic Acid |
| EMA | European Medicines Agency |
| EMR | Electronic Medical Record |
| ER | Estrogen Receptor |
| ER+ | Estrogen Receptor Positive |
| ESMO | European Society for Medical Oncology |
| FDA | Food and Drug Administration |
| FFDM | Full-Field Digital Mammography |
| GLP-1RA | Glucagon-Like Peptide-1 Receptor Agonist |
| HRT | Hormone Replacement Therapy |
| IBIS | International Breast Cancer Intervention Study |
| LCIS | Lobular Carcinoma In Situ |
| mHealth | Mobile Health |
| MRI | Magnetic Resonance Imaging |
| NCCN | National Comprehensive Cancer Network |
| NSAIDs | Non-Steroidal Anti-Inflammatory Drugs |
| OR | Odds Ratio |
| PROMs | Patient-Reported Outcome Measures |
| PRS | Polygenic Risk Score |
| QoL | Quality of Life |
| RR | Relative Risk |
| SERD | Selective Estrogen Receptor Degrader |
| SERM | Selective Estrogen Receptor Modulator |
| TAM | Tamoxifen |
| TNBC | Triple-Negative Breast Cancer |
| USPSTF | United States Preventive Services Task Force |
References
- Sonkin, D.; Thomas, A.; Teicher, B.A. Cancer treatments: Past, present, and future. Cancer Genet. 2024, 286–287, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Dilger, J.P. Different strategies for cancer treatment: Targeting cancer cells or their neighbors? Chin. J. Cancer Res. 2025, 37, 289–292. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 438–451. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Fillon, M. Most young female cancer survivors are at minimal risk for obstetric problems. CA Cancer J. Clin. 2024, 74, 467–468. [Google Scholar] [CrossRef]
- Fisher, B.; Costantino, J.P.; Wickerham, D.L.; Redmond, C.K.; Kavanah, M.; Cronin, W.M.; Vogel, V.; Robidoux, A.; Dimitrov, N.; Atkins, J.; et al. Tamoxifen for Prevention of Breast Cancer: Report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. JNCI J. Natl. Cancer Inst. 1998, 90, 1371–1388. [Google Scholar] [CrossRef]
- Vogel, V.G.; Costantino, J.P.; Wickerham, D.L.; Cronin, W.M.; Cecchini, R.S.; Atkins, J.N.; Bevers, T.B.; Fehrenbacher, L.; Pajon, E.R.; Wade, J.L.; et al. Effects of Tamoxifen vs Raloxifene on the Risk of Developing Invasive Breast Cancer and Other Disease OutcomesThe NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 Trial. J. Am. Med. Assoc. 2006, 295, 2727–2741. [Google Scholar] [CrossRef]
- Cummings, S.R.; Eckert, S.; Krueger, K.A.; Grady, D.; Powles, T.J.; Cauley, J.A.; Norton, L.; Nickelsen, T.; Bjarnason, N.H.; Morrow, M.; et al. The Effect of Raloxifene on Risk of Breast Cancer in Postmenopausal Women. JAMA 1999, 281, 2189–2197. [Google Scholar] [CrossRef]
- Freedman, A.N.; Yu, B.; Gail, M.H.; Costantino, J.P.; Graubard, B.I.; Vogel, V.G.; Anderson, G.L.; McCaskill-Stevens, W. Benefit/Risk Assessment for Breast Cancer Chemoprevention With Raloxifene or Tamoxifen for Women Age 50 Years or Older. J. Clin. Oncol. 2011, 29, 2327–2333. [Google Scholar] [CrossRef]
- Cuzick, J.; Sestak, I.; Forbes, J.F.; Dowsett, M.; Knox, J.; Cawthorn, S.; Saunders, C.; Roche, N.; Mansel, R.E.; von Minckwitz, G.; et al. Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): An international, double-blind, randomised placebo-controlled trial. Lancet 2014, 383, 1041–1048. [Google Scholar] [CrossRef]
- Cuzick, J.; Sestak, I.; Forbes, J.F.; Dowsett, M.; Cawthorn, S.; Mansel, R.E.; Loibl, S.; Bonanni, B.; Evans, D.G.; Howell, A.; et al. Use of anastrozole for breast cancer prevention (IBIS-II): Long-term results of a randomised controlled trial. Lancet 2021, 397, 796. [Google Scholar] [CrossRef] [PubMed]
- Goss, P.E.; Ingle, J.N.; Alés-Martínez, J.E.; Cheung, A.M.; Chlebowski, R.T.; Wactawski-Wende, J.; McTiernan, A.; Robbins, J.; Johnson, K.C.; Martin, L.W.; et al. Exemestane for Breast-Cancer Prevention in Postmenopausal Women. N. Engl. J. Med. 2011, 364, 2381–2391. [Google Scholar] [CrossRef] [PubMed]
- Horsman, D.; Wilson, B.J.; Avard, D.; Meschino, W.S.; Sing, C.K.; Plante, M.; Eisen, A.; Howley, H.E.; Simard, J. Clinical Management Recommendations for Surveillance and Risk-Reduction Strategies for Hereditary Breast and Ovarian Cancer Among Individuals Carrying a Deleterious BRCA1 or BRCA2 Mutation. J. Obstet. Gynaecol. Can. 2007, 29, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Cuzick, J.; Sestak, I.; Cawthorn, S.; Hamed, H.; Holli, K.; Howell, A.; Forbes, J.F.; IBIS-I Investigators. Tamoxifen for prevention of breast cancer: Extended long-term follow-up of the IBIS-I breast cancer prevention trial. Lancet Oncol. 2015, 16, 67–75. [Google Scholar] [CrossRef]
- Amin, N.H.; Abou-Bakr, A.; Eissa, S.; Nassar, H.R.; Eissa, T.S.; Mohamed, G. Expression of PD-L1 in Early-Stage Invasive Breast Carcinoma and Its Relation to Tumor-Infiltrating Lymphocytes. Asian Pac. J. Cancer Prev. 2022, 23, 1091–1102. [Google Scholar] [CrossRef]
- Vogel, V.G.; Qu, Y.; Wong, M.; Mitchell, B.; Mershon, J.L. Incidence of Invasive Breast Cancer in Postmenopausal Women After Discontinuation of Long-Term Raloxifene Administration. Clin. Breast Cancer 2009, 9, 45–50. [Google Scholar] [CrossRef]
- Barrett-Connor, E.; Mosca, L.; Collins, P.; Geiger, M.J.; Grady, D.; Kornitzer, M.; McNabb, M.A.; Wenger, N.K. Effects of Raloxifene on Cardiovascular Events and Breast Cancer in Postmenopausal Women. N. Engl. J. Med. 2006, 355, 125–137. [Google Scholar] [CrossRef]
- Meggetto, O.; Maunsell, E.; Chlebowski, R.; Goss, P.; Tu, D.; Richardson, H. Factors Associated With Early Discontinuation of Study Treatment in the Mammary Prevention.3 Breast Cancer Chemoprevention Trial. J. Clin. Oncol. 2017, 35, 629–635. [Google Scholar] [CrossRef]
- DeCensi, A.; Puntoni, M.; Guerrieri-Gonzaga, A.; Caviglia, S.; Avino, F.; Cortesi, L.; Taverniti, C.; Pacquola, M.G.; Falcini, F.; Gulisano, M.; et al. Randomized Placebo Controlled Trial of Low-Dose Tamoxifen to Prevent Local and Contralateral Recurrence in Breast Intraepithelial Neoplasia. J. Clin. Oncol. 2019, 37, 1629–1637. [Google Scholar] [CrossRef]
- Johansson, H.; Macis, D.; Oliva, M.; Puntoni, M.; Blondeaux, E.; Guerrieri-Gonzaga, A.; Aristarco, V.; Briata, I.M.; Buttiron-Webber, T.; Boni, L.; et al. Predictive Effect of IGFBP-3 on Low-Dose Tamoxifen Efficacy in Noninvasive Breast Cancer in the Phase III Tam-01 Trial. Clin. Cancer Res. 2025, 31, 1841–1846. [Google Scholar] [CrossRef]
- Crew, K.; Anderson, G.; Arnold, K.; Stieb, A.; Amenta, J.; Collins, N.; Law, C.; Pruthi, S.; Sandoval-Leon, A.; Bertoni, D.; et al. Making Informed Choices On Incorporating Chemoprevention into carE (MiCHOICE, SWOG 1904): Design and methods of a cluster randomized controlled trial. Contemp. Clin. Trials 2024, 142, 107564. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.J.; Ashley, S.; Tidy, A.; Smith, I.E.; Dowsett, M. Twenty-Year Follow-up of the Royal Marsden Randomized, Double-Blinded Tamoxifen Breast Cancer Prevention Trial. JNCI J. Natl. Cancer Inst. 2007, 99, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Hammarström, M.; Gabrielson, M.; Crippa, A.; Discacciati, A.; Eklund, M.; Lundholm, C.; Bäcklund, M.; Wengström, Y.; Borgquist, S.; Bergqvist, J.; et al. Side effects of low-dose tamoxifen: Results from a six-armed randomised controlled trial in healthy women. Br. J. Cancer 2023, 129, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Gail, M.H.; Brinton, L.A.; Byar, D.P.; Corle, D.K.; Green, S.B.; Schairer, C.; Mulvihill, J.J. Projecting Individualized Probabilities of Developing Breast Cancer for White Females Who Are Being Examined Annually. JNCI J. Natl. Cancer Inst. 1989, 81, 1879–1886. [Google Scholar] [CrossRef]
- McEvoy, M.P.; Coopey, S.B.; Mazzola, E.; Buckley, J.; Belli, A.; Polubriaginof, F.; Merrill, A.L.; Tang, R.; Garber, J.E.; Smith, B.L.; et al. Breast Cancer Risk and Follow-up Recommendations for Young Women Diagnosed with Atypical Hyperplasia and Lobular Carcinoma In Situ (LCIS). Ann. Surg. Oncol. 2015, 22, 3346–3349. [Google Scholar] [CrossRef]
- Boyd, N.F.; Guo, H.; Martin, L.J.; Sun, L.; Stone, J.; Fishell, E.; Jong, R.A.; Hislop, G.; Chiarelli, A.; Minkin, S.; et al. Mammographic Density and the Risk and Detection of Breast Cancer. N. Engl. J. Med. 2007, 356, 227–236. [Google Scholar] [CrossRef]
- Tyrer, J.; Duffy, S.W.; Cuzick, J. A breast cancer prediction model incorporating familial and personal risk factors. Stat. Med. 2004, 23, 1111–1130. [Google Scholar] [CrossRef]
- Brentnall, A.R.; Cuzick, J. Risk Models for Breast Cancer and Their Validation. Stat. Sci. 2020, 35, 14–30. [Google Scholar] [CrossRef]
- Mulder, C.V.; Yang, X.; Jee, Y.H.; Scott, C.G.; Gao, C.; Cao, Y.; Hurson, A.N.; Eriksson, M.; Vachon, C.M.; Hall, P.; et al. Evaluating mammographic density′s contribution to improve a breast cancer risk model with questionnaire-based and polygenic factors. npj Breast Cancer 2025, 11, 106. [Google Scholar] [CrossRef]
- The Consortium of Investigators of Modifiers of BRCA1/2; Lee, A.J.; The Breast Cancer Association Consortium; Cunningham, A.P.; Kuchenbaecker, K.B.; Mavaddat, N.; Easton, D.F.; Antoniou, A.C. BOADICEA breast cancer risk prediction model: Updates to cancer incidences, tumour pathology and web interface. Br. J. Cancer 2013, 110, 535–545. [Google Scholar] [CrossRef]
- King, M.-C.; Marks, J.H.; Mandell, J.B. Breast and Ovarian Cancer Risks Due to Inherited Mutations in BRCA1 and BRCA2. Science 2003, 302, 643–646. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence (NICE). Familial Breast Cancer: Classification, Care and Managing Breast Cancer and Related Risks in People with a Family History of Breast Cancer. 2023. Available online: https://www.nice.org.uk/guidance/cg164 (accessed on 10 October 2025).
- Sessa, C.; Balmaña, J.; Bober, S.; Cardoso, M.; Colombo, N.; Curigliano, G.; Domchek, S.; Evans, D.; Fischerova, D.; Harbeck, N.; et al. Risk reduction and screening of cancer in hereditary breast-ovarian cancer syndromes: ESMO Clinical Practice Guideline. Ann. Oncol. 2022, 34, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Bevers, T.B.; Armstrong, D.K.; Arun, B.; Carlson, R.W.; Cowan, K.H.; Daly, M.B.; Fleming, I.; Garber, J.E.; Gemignani, M.; Gradishar, W.J.; et al. Breast cancer risk reduction, Version 2.2025. J. Natl. Compr. Canc. Netw. 2015, 13, 880–895. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, L.C.; Sellers, T.A.; Frost, M.H.; Lingle, W.L.; Degnim, A.C.; Ghosh, K.; Vierkant, R.A.; Maloney, S.D.; Pankratz, V.S.; Hillman, D.W.; et al. Benign Breast Disease and the Risk of Breast Cancer. N. Engl. J. Med. 2005, 353, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Travis, L.B.; Hill, D.A.; Dores, G.; Gospodarowicz, M.; Van Leeuwen, F.E.; Holowaty, E.; Glimelius, B.; Andersson, M.; Wiklund, T.; Lynch, C.F.; et al. Breast Cancer Following Radiotherapy and Chemotherapy Among Young Women With Hodgkin Disease. JAMA 2003, 290, 465–475. [Google Scholar] [CrossRef]
- Mavaddat, N.; Michailidou, K.; Dennis, J.; Lush, M.; Fachal, L.; Lee, A.; Tyrer, J.P.; Chen, T.-H.; Wang, Q.; Bolla, M.K.; et al. Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. Am. J. Hum. Genet. 2019, 104, 21–34. [Google Scholar] [CrossRef]
- Roberts, E.; Howell, S.; Evans, D.G. Polygenic risk scores and breast cancer risk prediction. Breast 2023, 67, 71–77. [Google Scholar] [CrossRef]
- Yala, A.; Mikhael, P.G.; Strand, F.; Lin, G.; Smith, K.; Wan, Y.-L.; Lamb, L.; Hughes, K.; Lehman, C.; Barzilay, R. Toward robust mammography-based models for breast cancer risk. Sci. Transl. Med. 2021, 13, eaba4373. [Google Scholar] [CrossRef]
- Ellis, S.; Gomes, S.; Trumble, M.; Halling-Brown, M.D.; Young, K.C.; Chaudhry, N.S.; Harris, P.; Warren, L.M. Deep Learning for Breast Cancer Risk Prediction: Application to a Large Representative UK Screening Cohort. Radiol. Artif. Intell. 2024, 6, e230431. [Google Scholar] [CrossRef]
- Rafiepoor, H.; Ghorbankhanloo, A.; Zendehdel, K.; Madar, Z.Z.; Hajivalizadeh, S.; Hasani, Z.; Sarmadi, A.; Amanpour-Gharaei, B.; Barati, M.A.; Saadat, M.; et al. Comparison of Machine Learning Models for Classification of Breast Cancer Risk Based on Clinical Data. Cancer Rep. 2025, 8, e70175. [Google Scholar] [CrossRef]
- Force, U.P.S.T.; Owens, D.K.; Davidson, K.W.; Krist, A.H.; Barry, M.J.; Cabana, M.; Caughey, A.B.; Doubeni, C.A.; Epling, J.W.; Kubik, M.; et al. Medication Use to Reduce Risk of Breast Cancer. JAMA 2019, 322, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Visvanathan, K.; Hurley, P.; Bantug, E.; Brown, P.; Col, N.F.; Cuzick, J.; Davidson, N.E.; DeCensi, A.; Fabian, C.; Ford, L.; et al. Use of Pharmacologic Interventions for Breast Cancer Risk Reduction: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2013, 31, 2942–2962. [Google Scholar] [CrossRef] [PubMed]
- Gradishar, W.J.; Moran, M.S.; Abraham, J.; Abramson, V.; Aft, R.; Agnese, D.; Allison, K.H.; Anderson, B.; Bailey, J.; Burstein, H.J.; et al. Breast Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2024, 22, 331–357. [Google Scholar] [CrossRef] [PubMed]
- Decensi, A.; Maisonneuve, P.; Rotmensz, N.; Bettega, D.; Costa, A.; Sacchini, V.; Salvioni, A.; Travaglini, R.; Oliviero, P.; D’aiuto, G.; et al. Effect of Tamoxifen on Venous Thromboembolic Events in a Breast Cancer Prevention Trial. Circulation 2005, 111, 650–656. [Google Scholar] [CrossRef]
- Cuzick, J.; DeCensi, A.; Arun, B.; Brown, P.H.; Castiglione, M.; Dunn, B.; Forbes, J.F.; Glaus, A.; Howell, A.; von Minckwitz, G.; et al. Preventive therapy for breast cancer: A consensus statement. Lancet Oncol. 2011, 12, 496–503. [Google Scholar] [CrossRef]
- Kondo, M.; Hoshi, S.-L.; Toi, M. Economic evaluation of chemoprevention of breast cancer with tamoxifen and raloxifene among high-risk women in Japan. Br. J. Cancer 2009, 100, 281–290. [Google Scholar] [CrossRef][Green Version]
- Roetzheim, R.G.; Lee, J.-H.; Fulp, W.; Gomez, E.M.; Clayton, E.; Tollin, S.; Khakpour, N.; Laronga, C.; Lee, M.C.; Kiluk, J.V. Acceptance and adherence to chemoprevention among women at increased risk of breast cancer. Breast 2015, 24, 51–56. [Google Scholar] [CrossRef]
- Smith, S.G.; Sestak, I.; Howell, A.; Forbes, J.; Cuzick, J. Participant-Reported Symptoms and Their Effect on Long-Term Adherence in the International Breast Cancer Intervention Study I (IBIS I). J. Clin. Oncol. 2017, 35, 2666–2673. [Google Scholar] [CrossRef]
- Kass, N.E.; Hull, S.C.; Natowicz, M.R.; Faden, R.R.; Plantinga, L.; Gostin, L.O.; Slutsman, J. Medical privacy and the disclosure of personal medical information: The beliefs and experiences of those with genetic and other clinical conditions. Am. J. Med. Genet. Part A 2004, 128, 261–270. [Google Scholar] [CrossRef]
- Padamsee, T.J.; Hils, M.; Muraveva, A. Correction to: Understanding low chemoprevention uptake by women at high risk of breast cancer: Findings from a qualitative inductive study of women’s risk-reduction experiences. BMC Women’s Health 2021, 21, 204. [Google Scholar] [CrossRef]
- Kaplan, C.P.; Haas, J.S.; Pérez-Stable, E.J.; Jarlais, G.D.; Gregorich, S.E. Factors affecting breast cancer risk reduction practices among California physicians. Prev. Med. 2005, 41, 7–15. [Google Scholar] [CrossRef]
- Trivedi, M.S.; Coe, A.M.; Vanegas, A.; Kukafka, R.; Crew, K.D. Chemoprevention Uptake among Women with Atypical Hyperplasia and Lobular and Ductal Carcinoma In Situ. Cancer Prev. Res. 2017, 10, 434–441. [Google Scholar] [CrossRef]
- Reimers, L.L.; Sivasubramanian, P.S.; Hershman, D.; Terry, M.B.; Greenlee, H.; Campbell, J.; Kalinsky, K.; Maurer, M.; Jayasena, R.; Sandoval, R.; et al. Breast Cancer Chemoprevention among High-risk Women and those with Ductal Carcinoma In Situ. Breast J. 2015, 21, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Kukafka, R.; Yi, H.; Xiao, T.; Thomas, P.; Aguirre, A.; Smalletz, C.; David, R.; Crew, K. Why Breast Cancer Risk by the Numbers Is Not Enough: Evaluation of a Decision Aid in Multi-Ethnic, Low-Numerate Women. J. Med. Internet Res. 2015, 17, e165. [Google Scholar] [CrossRef] [PubMed]
- Heisey, R.; Carroll, J.C. Identification and management of women with a family history of breast cancer: Practical guide for clinicians. Can. Fam. Physicians 2016, 62, 799–803. [Google Scholar]
- Evans, D.G.; McWilliams, L.; Astley, S.; Brentnall, A.R.; Cuzick, J.; Dobrashian, R.; Duffy, S.W.; Gorman, L.S.; Harkness, E.F.; Harrison, F.; et al. Quantifying the effects of risk-stratified breast cancer screening when delivered in real time as routine practice versus usual screening: The BC-Predict non-randomised controlled study (NCT04359420). Br. J. Cancer 2023, 128, 2063–2071. [Google Scholar] [CrossRef]
- Michel, A.M.; Yi, H.; Amenta, J.; Collins, N.; Vaynrub, A.; Umakanth, S.; Anderson, G.; Arnold, K.; Law, C.; Pruthi, S.; et al. Use of web-based decision support to improve informed choice for chemoprevention: A qualitative analysis of pre-implementation interviews (SWOG S1904). BMC Med. Inform. Decis. Mak. 2024, 24, 272. [Google Scholar] [CrossRef]
- van Kessel, R.; Roman-Urrestarazu, A.; Anderson, M.; Kyriopoulos, I.; Field, S.; Monti, G.; Reed, S.D.; Pavlova, M.; Wharton, G.; Mossialos, E. Mapping Factors That Affect the Uptake of Digital Therapeutics Within Health Systems: Scoping Review. J. Med. Internet Res. 2023, 25, e48000. [Google Scholar] [CrossRef]
- Lantzsch, H.; Eckhardt, H.; Campione, A.; Busse, R.; Henschke, C. Digital health applications and the fast-track pathway to public health coverage in Germany: Challenges and opportunities based on first results. BMC Health Serv. Res. 2022, 22, 1182. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Cheng, C.; Wang, X.; Yin, J.; Qiang, W. Effects of a web-based decision aid on breast cancer patients considering a breast reconstruction: A randomized controlled trial. BMC Women’s Health 2025, 25, 217. [Google Scholar] [CrossRef]
- Ke, Y.; Cheng, I.; Tan, G.S.H.; Fok, R.W.Y.; Chan, J.J.; Loh, K.W.-J.; Chan, A. Development and pilot testing of a decision aid for navigating breast cancer survivorship care. BMC Med. Inform. Decis. Mak. 2022, 22, 330. [Google Scholar] [CrossRef] [PubMed]
- Schapira, M.M.; Fletcher, K.E.; Hayes, A.; Eastwood, D.; Patterson, L.; Ertl, K.; Whittle, J. The Development and Validation of the Hypertension Evaluation of Lifestyle and Management Knowledge Scale. J. Clin. Hypertens. 2012, 14, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Lungu, D.A.; Pennucci, F.; De Rosis, S.; Romano, G.; Melfi, F. Implementing successful systematic Patient Reported Outcome and Experience Measures (PROMs and PREMs) in robotic oncological surgery—The role of physicians. Int. J. Health Plan. Manag. 2019, 35, 773–787. [Google Scholar] [CrossRef]
- Tarricone, R.; Banks, H.; Ciani, O.; Brouwer, W.; Drummond, M.F.; Leidl, R.; Martelli, N.; Sampietro-Colom, L.; Taylor, R.S. An accelerated access pathway for innovative high-risk medical devices under the new European Union Medical Devices and health technology assessment regulations? Analysis and recommendations. Expert Rev. Med. Devices 2023, 20, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Sundralingam, U.; Khan, T.M.; Elendran, S.; Muniyandy, S.; Palanisamy, U.D. Review: Patient-controlled transdermal 4-hydroxytamoxifen (4-OHT) vs. oral tamoxifen: A systematic review and meta analysis. Pak. J. Pharm. Sci. 2019, 32, 1121–1128. [Google Scholar]
- ClinicalTrials.gov ID NCT06364267. Low-Dose Exemestane vs Low Dose in Post-menopausal Women at High Risk for Breast Cancer. (BabyTears). 2025. Available online: https://www.clinicaltrials.gov/study/NCT06364267 (accessed on 10 October 2025).
- Serrano, D.; Gandini, S.; Thomas, P.; Crew, K.D.; Kumar, N.B.; Vornik, L.A.; Lee, J.J.; Veronesi, P.; Viale, G.; Guerrieri-Gonzaga, A.; et al. Efficacy of Alternative Dose Regimens of Exemestane in Postmenopausal Women With Stage 0 to II Estrogen Receptor–Positive Breast Cancer. JAMA Oncol. 2023, 9, 664–672. [Google Scholar] [CrossRef]
- Guerrieri-Gonzaga, A.; Serrano, D.; Gnagnarella, P.; Johansson, H.; Zovato, S.; Nardi, M.; Pensabene, M.; Buccolo, S.; DeCensi, A.; Briata, I.M.; et al. Low dose TamOxifen and LifestylE changes for bReast cANcer prevention (TOLERANT study): Study protocol of a randomized phase II biomarker trial in women at increased risk for breast cancer. PLoS ONE 2024, 19, e0309511. [Google Scholar] [CrossRef]
- Lazzeroni, M.; Puntoni, M.; Guerrieri-Gonzaga, A.; Serrano, D.; Boni, L.; Webber, T.B.; Fava, M.; Briata, I.M.; Giordano, L.; Digennaro, M.; et al. Randomized Placebo Controlled Trial of Low-Dose Tamoxifen to Prevent Recurrence in Breast Noninvasive Neoplasia: A 10-Year Follow-Up of TAM-01 Study. J. Clin. Oncol. 2023, 41, 3116–3121. [Google Scholar] [CrossRef]
- Chalasani, P.; Stopeck, A.; Clarke, K.; Livingston, R. A Pilot Study of Estradiol Followed by Exemestane for Reversing Endocrine Resistance in Postmenopausal Women With Hormone Receptor-Positive Metastatic Breast Cancer. Oncologist 2014, 19, 1127–1128. [Google Scholar] [CrossRef][Green Version]
- Wang, L.; Yang, Y.; Song, Y.; Zeng, J.; Zheng, H.; Wu, X. Decoding tumor-infiltrating lymphocytes heterogeneity in ductal carcinoma in situ: Immune microenvironment dynamics and prognostic insights. Discov. Oncol. 2025, 16, 1435. [Google Scholar] [CrossRef]
- Burn, J.; Sheth, H.; Elliott, F.; Reed, L.; Macrae, F.; Mecklin, J.-P.; Möslein, G.; McRonald, F.E.; Bertario, L.; Evans, D.G.; et al. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: A double-blind, randomised, placebo-controlled trial. Lancet 2020, 395, 1855–1863. [Google Scholar] [CrossRef] [PubMed]
- Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study Group. The effect of vitamin E and β-carotene on the incidence of lung cancer in male smokers. N. Engl. J. Med. 1994, 330, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz-Fathi, M.; Rezaei, N. Cancer Immunoprevention: Current Status and Future Directions. Arch. Immunol. Ther. Exp. 2021, 69, 3. [Google Scholar] [CrossRef]
- Lloyd, M.R.; Wander, S.A.; Hamilton, E.; Razavi, P.; Bardia, A. Next-generation selective estrogen receptor degraders and other novel endocrine therapies for management of metastatic hormone receptor-positive breast cancer: Current and emerging role. Ther. Adv. Med. Oncol. 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Bidard, F.-C.; Kaklamani, V.G.; Neven, P.; Streich, G.; Montero, A.J.; Forget, F.; Mouret-Reynier, M.-A.; Sohn, J.H.; Taylor, D.; Harnden, K.K.; et al. Elacestrant (oral selective estrogen receptor degrader) Versus Standard Endocrine Therapy for Estrogen Receptor–Positive, Human Epidermal Growth Factor Receptor 2–Negative Advanced Breast Cancer: Results From the Randomized Phase III EMERALD Trial. J. Clin. Oncol. 2022, 40, 3246–3256. [Google Scholar] [CrossRef]
- ClinicalTrials.gov ID NCT05563220. Open-Label Umbrella Study to Evaluate Safety and Efficacy of Elacestrant in Various Combination in Participants with Metastatic Breast Cancer (ELEVATE). 2024. Available online: https://clinicaltrials.gov/study/NCT05563220 (accessed on 10 October 2025).
- Alva-Bianchi, M.; Sánchez-Bayona, R.; Ciruelos, E. Oral SERDs: Transforming the treatment of advanced breast cancer—Insights from EMBER-3. Med 2025, 6, 100602. [Google Scholar] [CrossRef]
- ClinicalTrials.gov ID NCT04711252. A Comparative Study of AZD9833 Plus Palbociclib Versus Anastrozole Plus Palbociclib in Patients with ER-Positive HER2 Negative Breast Cancer Who Have Not Received Any Systemic Treatment for Advanced Disease (SERENA-4). 2025. Available online: https://clinicaltrials.gov/study/NCT04711252 (accessed on 10 October 2025).
- Tamura, K.; Mukohara, T.; Yonemori, K.; Kawabata, Y.; Nicolas, X.; Tanaka, T.; Iwata, H. Phase 1 study of oral selective estrogen receptor degrader (SERD) amcenestrant (SAR439859), in Japanese women with ER-positive and HER2-negative advanced breast cancer (AMEERA-2). Breast Cancer 2023, 30, 506–517. [Google Scholar] [CrossRef]
- Collaborative Group on Hormonal Factors in Breast Cancer. Type and timing of menopausal hormone therapy and breast cancer risk: Individual participant meta-analysis of the worldwide epidemiological evidence. Lancet 2019, 394, 1159–1168. [Google Scholar] [CrossRef]
- Anderson, G.L.; Chlebowski, R.T.; Aragaki, A.K.; Kuller, L.H.; Manson, J.E.; Gass, M.; Bluhm, E.; Connelly, S.; Hubbell, F.A.; Lane, D.; et al. Conjugated equine oestrogen and breast cancer incidence and mortality in postmenopausal women with hysterectomy: Extended follow-up of the Women’s Health Initiative randomised placebo-controlled trial. Lancet Oncol. 2012, 13, 476–486. [Google Scholar] [CrossRef]
- Finn, O.J. Human Tumor Antigens Yesterday, Today, and Tomorrow. Cancer Immunol. Res. 2017, 5, 347–354. [Google Scholar] [CrossRef]
- Kufe, D.W. MUC1-C oncoprotein as a target in breast cancer: Activation of signaling pathways and therapeutic approaches. Oncogene 2013, 32, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Disis, M.L.; Wallace, D.R.; Gooley, T.A.; Dang, Y.; Slota, M.; Lu, H.; Coveler, A.L.; Childs, J.S.; Higgins, D.M.; Fintak, P.A.; et al. Concurrent trastuzumab and HER2/neu-specific vaccination in patients with HER2-overexpressing breast cancer. J. Clin. Oncol. 2009, 27, 4685–4692. [Google Scholar] [CrossRef] [PubMed]
- Greenwich LifeSciences, Inc. FDA Grants Fast Track Designation to GLSI-100 HER2/Neu Peptide Vaccine for Recurrence Prevention in HER2-Positive Breast Cancer; Press Release 17 September 2025; Greenwich Life Sciences Inc.: Stafford, TX, USA, 2025. [Google Scholar]
- Watson, M.A.; Fleming, T.P. Mammaglobin, a mammary-specific member of the uteroglobin gene family, is overexpressed in human breast cancer. Cancer Res. 1996, 56, 860–865. [Google Scholar] [PubMed]
- Jaini, R.; Kesaraju, P.; Johnson, J.M.; Altuntas, C.Z.; Jane-Wit, D.; Tuohy, V.K. An α-lactalbumin immune response prevents breast cancer. Nat. Med. 2010, 16, 799–805. [Google Scholar] [CrossRef]
- Lawson, J.S.; Salmons, B.; Glenn, W.K. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV), Bovine Leukemia Virus (BLV), Human Papilloma Virus (HPV), and Epstein–Barr Virus (EBV). Front. Oncol. 2018, 8, 1. [Google Scholar] [CrossRef]
- Wang-Johanning, F.; Frost, A.R.; Johanning, G.L.; Khazaeli, M.B.; LoBuglio, A.F.; Shaw, D.R.; Strong, T.V. Expression of human endogenous retrovirus k envelope transcripts in human breast cancer. Clin. Cancer Res. 2001, 7, 1553–1560. [Google Scholar]
- Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy. Cancer Cell 2015, 27, 450–461. [Google Scholar] [CrossRef]
- Liu, M.A. A Comparison of Plasmid DNA and mRNA as Vaccine Technologies. Vaccines 2019, 7, 37. [Google Scholar] [CrossRef]
| Agent | Trial/Population/mFU | Comparator | Primary Prevention Outcome Used for ARR | ARR | NNT | Key Harm(s) with Absolute Excess → NNH |
|---|---|---|---|---|---|---|
| Tamoxifen 20 mg QD | NSABP P-1 (BCPT) [6]; high-risk women; 5y | Placebo | Invasive breast cancer | 2.14% | 47 | Postmeno. endometrial cancer: +2.3/1000 → NNH 435; PE: +0.7/1000 → NNH 1429; Stroke: +0.9/1000 → NNH 1111; DVT +0.6/1000 → NNH 1667 |
| Tamoxifen 20 mg QD | IBIS-I [14]; high-risk women; 16y | Placebo | All breast cancer | 1–2% | — | Harms consistent with SERM class effect (↑ VTE, ↑ endometrium post-meno) |
| Raloxifene 60 mg QD | STAR (P-2) [15]; postmenopausal high-risk; 6.75y | Tamoxifen | Invasive breast cancer | 0 | — | Fewer harms vs. tamoxifen; thromboembolism: −1.10/1000 → NNTB 909; invasive endometrial cancer: −0.75/1000 → NNTB 1333; cataracts −2.58/1000 → NNTB 388 |
| Raloxifene 60 mg QD | CORE [8,16], (extension of MORE [8] trial); osteoporotic postmenopause; 4y-safety data also from RUTH [17] trial; CV risk women; 5.6y | Placebo | Invasive breast cancer | 1.19% | 84 | ↑ VTE in RUTH: +1.2/1000 woman-years (NNH 833 per year; 149 over 5.6 y) |
| Anastrozole 1 mg QD | IBIS-II [10,11] postmenopausal high-risk; 7y | Placebo | All breast cancer | 2.8% | 36 | Fractures not significantly increased (NNH not estimable); BMD loss observed |
| Exemestane 25 mg QD | MAP.3 [18]; postmenopausal ≥1 risk factor; 3y | Placebo | Invasive breast cancer | 1.07% | 94 | No significant ↑ in major AEs; modest BMD decline |
| Low-dose Tamoxifen 5 mg QD (3 y) | TAM-01 [19,20] DCIS/ADH/ALH/LCIS after surgery; 5.1y | Placebo | New breast events (invasive + in situ) | 4.6% | 22 | Serious AEs not increased vs. placebo; very low absolute counts → NNH not estimable |
| Model | Variables | Risk Estimates | Strengths | Limitations | Guideline Thresholds * | Access/Platform |
|---|---|---|---|---|---|---|
| Gail (BCRAT) | Age; reproductive history (menarche, first live birth); first-degree family history; number of breast biopsies; race/ethnicity | 5-year and lifetime risk of invasive breast cancer | Simple, fast; widely used; basis of traditional U.S. eligibility criteria | Underestimates risk with strong hereditary history; no genetic variants included | U.S.: ≥1.66% 5-year risk traditionally used for SERM eligibility | Public web calculator (BCRAT) |
| Tyrer-Cuzick (IBIS) | BMI, HRT use, age at menopause; detailed family history; BRCA1/2 status; mammographic density | 10-year and lifetime breast cancer risk | More comprehensive; better identification of hereditary risk; density integration improves discrimination | — | Europe (NICE/ESMO): ≥3% 5-year risk often used in high-risk pathways | IBIS calculator (web/app) |
| BOADICEA (CanRisk) | Detailed pedigree; pathogenic variants (BRCA1/2, PALB2, CHEK2, ATM); tumor pathology; can integrate other factors | Carrier probability for pathogenic variants; breast & ovarian cancer risks | Genetics-integrated; standard in genetic counseling; precision stratification | — | Used within genetics-informed pathways; thresholds vary by context | CanRisk web |
| Organization | Eligible Population/Risk Criteria | Recommended Agents (Premenopausal/Postmenopausal) | Guideline Thresholds | Recommended Duration | Special Considerations |
|---|---|---|---|---|---|
| USPSTF [42] | Women at increased risk and low risk of adverse effects | Tamoxifen/Tamoxifen, Raloxifene, Anastrozole, Exemestane | Gail 5-year risk ≥ 1.66%; other validated models also allowed | 5 years | Offer to eligible women; against use in average/low risk. Monitor for VTE/endometrium with SERMs, bone loss with AIs |
| ASCO [43] | Women at increased risk (models, clinical factors, family history) | Tamoxifen/Tamoxifen, Raloxifene, Anastrozole, Exemestane | Absolute risk: no fixed thresholds recommended; focus on individualized benefit-risk | 5 years | Individualize by menopause/comorbidities; support shared decisions |
| NCCN [43] | Women with high-risk histology (ADH/ALH/LCIS), strong family history, or pathogenic variants (e.g., BRCA1/2) | Tamoxifen/Tamoxifen, Raloxifene, Anastrozole, Exemestane | Gail 5-year risk ≥ 1.7%; other validated models accepted | 5 years | Raloxifene if endometrial/VTE risk; Ais accepted but bone monitoring needed |
| ESMO [33] | High-risk women (clinical/familial); management recommended in specialized clinics. | Tamoxifen/Tamoxifen, Raloxifene, Anastrozole, Exemestane | Tyrer–Cuzick 5-year risk ≥3% | 5 years | Recommends individualized discussion and integration into European healthcare pathways |
| NICE [32] | Women at moderate or high familial risk, preferably assessed in specialized clinics | Tamoxifen/Anastrozole, Tamoxifen, Raloxifene | Tyrer–Cuzick 10-year/lifetime risk 17–29% (moderate) or ≥30% (high) | 5 years | Monitor bone health with AIs; integrate with familial/genetic risk management |
| Trial/NCT | Design and Population | Intervention/Comparator | Primary/Secondary Endpoints | Status/Sponsor |
|---|---|---|---|---|
| BABY-TEARS (NCT06364267) | Phase II, randomized, double-blind; postmenopausal women at high risk | Low-dose tamoxifen 10 mg EOD vs. low-dose exemestane 25 mg EOD | Primary: MENQOL; Secondary: Ki-67, mammographic density, adherence, acceptability | Planned start Sept 2025; Academic/Independent |
| TOLERANT (NCT06033092) | Phase II, 4-arm biomarker study; women at increased risk | Low-dose tamoxifen 10 mg EOD ± lifestyle (ICR, exercise) | Primary: SHBG modulation; Secondary: inflammatory/metabolic markers, microbiome, MD, PROs | Ongoing; Co-funded by the European Commission |
| LoTam (NCI 2024 06672) | Phase III, randomized; postmenopausal women with low-risk ER+ early BC or intraepithelial lesions | Tamoxifen 5 mg/day vs. standard endocrine therapy (tamoxifen 20 mg or AIs) | Primary: Non-inferiority for recurrence prevention; Secondary: AEs, QoL, adherence, biomarkers | Ongoing; NCI |
| ELDER | Phase II; postmenopausal women with stage 0–II ER+ BC, pre-surgery | Exemestane 25 mg EOD or 3×/week vs. daily dosing | Primary: Estrogen suppression; Secondary: side effects, adherence | Supported by NCI and BCRF |
| Strategy/Drug Class | Mechanism of Action | Examples | Key Evidence | Potential Role | Limitations/Challenges |
|---|---|---|---|---|---|
| Next-Generation Oral SERDs | Degradation of estrogen receptor; block ER signaling | Elacestrant, Camizestrant, Imlunestrant, Amcenestrant | Phase II–III trials (EMERALD, ELEVATE, EMBER-3) show activity in ER+ BC; under evaluation in prevention | Potential safer, more effective endocrine prevention option | Long-term safety in healthy women unknown; adherence and cost issues |
| Estrogen-Only Therapy | Hormone replacement without progestins | Conjugated equine estrogens | WHI and meta-analyses: reduce BC incidence in hysterectomized women | Potential preventive option in selected hysterectomized women | Risk of stroke, thromboembolism; limited to hysterectomized population |
| Non-Estrogenic Targets | Metabolic, anti-inflammatory, DNA repair, and signaling pathways modulation | Metformin, aspirin, statins, rexinoids, PARP-i, GLP-1RAs | Evidence from observational studies, early-phase trials, and preclinical models | Potential complements or alternatives to endocrine prevention, with dual benefits (e.g., metabolic syndrome and cancer risk reduction) | Optimal population selection and safety validation; need for development of new agents in the same class |
| Immuno-prevention | Induction of tumor-specific immune responses; targeting early oncogenic drivers | HER2-derived peptide vaccines, MUC1 vaccines, neoantigen-based platforms | Early-phase trials show immunogenicity and safety; ongoing studies in high-risk women | Long-term immune-mediated protection in genetically or clinically high-risk populations | Uncertain durability of immune response; challenges in antigen selection, regulatory pathways, and trial design |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarti, S.; Viansone, A.A.; Serra, O.; Casadei, C.; Cecconetto, L.; Di Menna, G.; Farolfi, A.; Gianni, C.; Mariotti, M.; Merloni, F.; et al. Pharmacological Prevention in Breast Cancer: Current Evidence, Challenges, and Future Directions. Cancers 2025, 17, 3597. https://doi.org/10.3390/cancers17223597
Sarti S, Viansone AA, Serra O, Casadei C, Cecconetto L, Di Menna G, Farolfi A, Gianni C, Mariotti M, Merloni F, et al. Pharmacological Prevention in Breast Cancer: Current Evidence, Challenges, and Future Directions. Cancers. 2025; 17(22):3597. https://doi.org/10.3390/cancers17223597
Chicago/Turabian StyleSarti, Samanta, Alessandro Adriano Viansone, Olga Serra, Chiara Casadei, Lorenzo Cecconetto, Giandomenico Di Menna, Alberto Farolfi, Caterina Gianni, Marita Mariotti, Filippo Merloni, and et al. 2025. "Pharmacological Prevention in Breast Cancer: Current Evidence, Challenges, and Future Directions" Cancers 17, no. 22: 3597. https://doi.org/10.3390/cancers17223597
APA StyleSarti, S., Viansone, A. A., Serra, O., Casadei, C., Cecconetto, L., Di Menna, G., Farolfi, A., Gianni, C., Mariotti, M., Merloni, F., Palleschi, M., Sirico, M., Zoppoli, G., & Musolino, A. (2025). Pharmacological Prevention in Breast Cancer: Current Evidence, Challenges, and Future Directions. Cancers, 17(22), 3597. https://doi.org/10.3390/cancers17223597

