Six-Month Local Control Rates and Immune Responses After Pulsed Electric Field Ablation in Metastatic Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Study Design and Patient Population
2.2. Ablation Procedure
2.3. Analysis Groups
2.4. Tumor Response Assessment
2.5. Immune Biomarker Analyses
2.6. Statistical Analysis
3. Results
3.1. Procedural Results
3.2. 6-Month Follow-Up
3.3. Immune Cell Dynamics
3.4. Biopsy-Specific IgG and TAA-Specific Antibody Profiling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AE | Adverse Events |
| BMI | Body Mass Index |
| BSA | Bovine Serum Albumin |
| CR | Complete Response |
| CT | Computed Tomography |
| DAMP | Damage-Associated Molecular Pattern |
| DMSO | Dimethyl Sulfoxide |
| ELISA | Enzyme-Linked Immunosorbent Assay |
| FIH | First in Human |
| IgG | Immunoglobulin G |
| LLL | Left Lower Lobe (lung anatomy) |
| LUL | Left Upper Lobe (lung anatomy) |
| MRI | Magnetic Resonance Imaging |
| mRECIST | Modified Response Evaluation Criteria in Solid Tumor |
| NSCLC | Non-Small Cell Lung Cancer |
| OD | Optical Density |
| PBMC | Peripheral Blood Mononuclear Cells |
| PBS | Phosphate-Buffered Saline |
| PEF | Pulsed Electric Field |
| PET-CT | Positron Emission Tomography-Computed Tomography |
| PD | Progressive Disease |
| PR | Partial Response |
| PTE population | Per-Treatment Evaluable population |
| RLL | Right Lower Lobe (lung anatomy) |
| RML | Right Medial Lobe (lung anatomy) |
| RUL | Right Upper Lobe (lung anatomy) |
Appendix A
Appendix A.1. Additional Analysis Groups Details
Appendix A.2. Ablation Coverage Estimation
Appendix B

Appendix C
| No Additional Therapy Patients n (% Patients) | Additional Therapy Patients n (% Patients) | |
|---|---|---|
| ECOG | ||
| 0 | 8 (66.7%) | 12 (75.0%) |
| 1 | 3 (25.0%) | 3 (18.8%) |
| 3 | 0 (0.0%) | 1 (6.3%) |
| Not Available | 1 (8.3%) | 0 (0.0%) |
| Malignancy Group | ||
| Colorectal | 0 (0.0%) | 5 (31.3%) |
| Neuroendocrine | 3 (25.0%) | 0 (0.0%) |
| NSCLC | 0 (0.0%) | 4 (25.0%) |
| Other | 5 (41.7%) | 4 (25.0%) |
| Renal | 4 (33.3%) | 1 (6.3%) |
| Sarcoma | 0 (0.0%) | 2 (12.5%) |
| Disease Burden at Baseline | ||
| Solitary | 1 (8.3%) | 1 (6.3%) |
| Oligofocal | 3 (25.0%) | 5 (31.3%) |
| Multifocal | 8 (66.7%) | 10 (62.5%) |
| Number of Tumors Ablated | ||
| 1 | 7 (58.3%) | 10 (62.5%) |
| 2 | 4 (33.3%) | 4 (25.0%) |
| 3 | 1 (8.3%) | 2 (12.5%) |
Appendix D
| No Additional Therapy Patients n (% Patients) | Additional Therapy Patients n (% Patients) | |
|---|---|---|
| ECOG = 0 | ||
| Solitary | 1 (8.3%) | 1 (6.3%) |
| Oligofocal | 2 (16.7%) | 4 (25.0%) |
| Multifocal | 5 (41.7%) | 7 (43.8%) |
| ECOG = 1 | ||
| Oligofocal | 1 (8.3%) | 0 (0.0%) |
| Multifocal | 2 (16.7%) | 3 (18.8%) |
| ECOG = 3 | ||
| Oligofocal | 0 (0.0%) | 1 (6.3%) |
| ECOG—Not available | ||
| Multifocal | 1 (8.3%) | 0 (0.0%) |
References
- Hellman, S.; Weichselbaum, R.R. Oligometastases. JCO 1995, 13, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The Biology and Management of Non-Small Cell Lung Cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Herbst, R.S.; Boshoff, C. Toward Personalized Treatment Approaches for Non-Small-Cell Lung Cancer. Nat. Med. 2021, 27, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Borghaei, H.; Gettinger, S.; Vokes, E.E.; Chow, L.Q.M.; Burgio, M.A.; de Castro Carpeno, J.; Pluzanski, A.; Arrieta, O.; Frontera, O.A.; Chiari, R.; et al. Five-Year Outcomes From the Randomized, Phase III Trials CheckMate 017 and 057: Nivolumab Versus Docetaxel in Previously Treated Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2021, 39, 723–733. [Google Scholar] [CrossRef]
- Jimenez, M. Safety and Feasibility of Pulsed Electric Field Ablation for Early-Stage Non-Small Cell Lung Cancer Prior to Surgical Resection. J. Surg. Oncol. 2025, 131, 1529–1542. [Google Scholar] [CrossRef]
- Pastori, C.; Nafie, E.H.O.; Wagh, M.S.; Mammarappallil, J.G.; Neal, R.E. Pulsed Electric Field Ablation versus Radiofrequency Thermal Ablation in Murine Breast Cancer Models: Anticancer Immune Stimulation, Tumor Response, and Abscopal Effects. J. Vasc. Interv. Radiol. 2024, 35, 442–451.e7. [Google Scholar] [CrossRef]
- Jimenez, M.; García-Hierro, J.F.; Aldeyturriaga, J.F.; van der Heijden, E.H.F.M.; Ng, C.; Lau, R.; Recalde, B.; Prieto, C.; Orfao, A.; Verhoeven, R.; et al. 697 Pulsed Electric Fields Induces a Stepwise Activation of Host Anti-Tumor Immunity in Patients with Early-Stage Non-Small Cell Lung Cancer (NSCLC). J. Immunother. Cancer 2023, 11, A789–A791. [Google Scholar] [CrossRef]
- Arciga, B.M.; Walters, D.M.; Kimchi, E.T.; Staveley-O’Carroll, K.F.; Li, G.; Teixeiro, E.; Rachagani, S.; Kaifi, J.T. Pulsed Electric Field Ablation as a Candidate to Enhance the Anti-Tumor Immune Response to Immune Checkpoint Inhibitors. Cancer Lett. 2025, 609, 217361. [Google Scholar] [CrossRef]
- Nafie, E.H.O.; Pastori, C.; Acharya, R.; Kaviani, R.; Hunter, D.; Shalaby, W.; Krimsky, W.S.; Neal, R.E. Understanding the Aliya Pulsed Electric Field Dose-Response Relationship: Implications for Ablation Size, Thermal Load, and Immune Response in an Orthotopic Murine Breast Cancer Model. PLoS ONE 2025, 20, e0318440. [Google Scholar] [CrossRef]
- Nafie, E.H.O.; Pastori, C.; Neal, R.E. Evaluating the Immune Response in a Murine Cancer Model between Irreversible Electroporation and an Advanced Biphasic Pulsed Electric Field Technology. Front. Oncol. 2025, 15, 1592610. [Google Scholar] [CrossRef]
- Pastori, C.; Nafie, E.H.O.; Wagh, M.S.; Hunt, S.J.; Neal, R.E. Neoadjuvant Chemo-Immunotherapy Is Improved with a Novel Pulsed Electric Field Technology in an Immune-Cold Murine Model. PLoS ONE 2024, 19, e0299499. [Google Scholar] [CrossRef]
- Pastori, C.; Nafie, E.; Neal, R.E. Analysis of Long-Lasting Tumor-Specific Antibodies from Murine Tumors Treated with Aliya Pulsed Electric Fields. JCO 2024, 42, e14543. [Google Scholar] [CrossRef]
- Pritchett, M.A.; Reisenauer, J.S.; Fernandez-Bussy, S.; DiBardino, D.; Hunt, S.J.; Ma, K.C.; Pua, B.B.; Shostak, E.; Hatton, B.A.; Moreno-Gonzalez, A.; et al. The Safety of Pulsed Electric Field Ablation Before Standard of Care Treatment for Patients With Metastatic Cancer. J. Bronchol. Interv. Pulmonol. 2025, 32, e01027. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New Response Evaluation Criteria in Solid Tumours: Revised RECIST Guideline (Version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Schwartz, L.H.; Litière, S.; De Vries, E.; Ford, R.; Gwyther, S.; Mandrekar, S.; Shankar, L.; Bogaerts, J.; Chen, A.; Dancey, J.; et al. RECIST 1.1—Update and Clarification: From the RECIST Committee. Eur. J. Cancer 2016, 62, 132–137. [Google Scholar] [CrossRef]
- Gomez, D.R.; Blumenschein, G.R.; Lee, J.J.; Hernandez, M.; Ye, R.; Camidge, D.R.; Doebele, R.C.; Skoulidis, F.; Gaspar, L.E.; Gibbons, D.L.; et al. Local Consolidative Therapy versus Maintenance Therapy or Observation for Patients with Oligometastatic Non-Small-Cell Lung Cancer without Progression after First-Line Systemic Therapy: A Multicentre, Randomised, Controlled, Phase 2 Study. Lancet Oncol. 2016, 17, 1672–1682. [Google Scholar] [CrossRef] [PubMed]
- Uhlig, J.; Case, M.D.; Blasberg, J.D.; Boffa, D.J.; Chiang, A.; Gettinger, S.N.; Kim, H.S. Comparison of Survival Rates After a Combination of Local Treatment and Systemic Therapy vs Systemic Therapy Alone for Treatment of Stage IV Non-Small Cell Lung Cancer. JAMA Netw. Open 2019, 2, e199702. [Google Scholar] [CrossRef] [PubMed]
- Barnaba, V. T Cell Memory in Infection, Cancer, and Autoimmunity. Front. Immunol. 2022, 12, 811968. [Google Scholar] [CrossRef]
- Wennhold, K.; Shimabukuro-Vornhagen, A.; von Bergwelt-Baildon, M. B Cell-Based Cancer Immunotherapy. Transfus. Med. Hemother. 2019, 46, 36–46. [Google Scholar] [CrossRef]
- Liu, J.; Fu, M.; Wang, M.; Wan, D.; Wei, Y.; Wei, X. Cancer Vaccines as Promising Immuno-Therapeutics: Platforms and Current Progress. J. Hematol. Oncol. 2022, 15, 28. [Google Scholar] [CrossRef]
- Zhu, W.; Yi, Q.; Chen, Z.; Wang, J.; Zhong, K.; Ouyang, X.; Yang, K.; Jiang, B.; Zhong, J.; Zhong, J. Exploring the Role and Mechanisms of MAGEA4 in Tumorigenesis, Regulation, and Immunotherapy. Mol. Med. 2025, 31, 43. [Google Scholar] [CrossRef]
- Wang, H.; Xia, Y.; Yu, J.; Guan, H.; Wu, Z.; Ban, D.; Wang, M. Expression of New York Esophageal Squamous Cell Carcinoma 1 and Its Association with Foxp3 and Indoleamine-2,3-Dioxygenase in Microenvironment of Nonsmall Cell Lung Cancer. HLA 2019, 94, 39–48. [Google Scholar] [CrossRef]
- Oji, Y.; Kitamura, Y.; Kamino, E.; Kitano, A.; Sawabata, N.; Inoue, M.; Mori, M.; Nakatsuka, S.; Sakaguchi, N.; Miyazaki, K.; et al. WT1 IgG Antibody for Early Detection of Nonsmall Cell Lung Cancer and as Its Prognostic Factor. Int. J. Cancer 2009, 125, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Saltos, A.; Khalil, F.; Smith, M.; Li, J.; Schell, M.; Antonia, S.J.; Gray, J.E. Clinical Associations of Mucin 1 in Human Lung Cancer and Precancerous Lesions. Oncotarget 2018, 9, 35666–35675. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, Y.; Kohno, N.; Yokoyama, A.; Kondo, K.; Hiwada, K.; Miyake, M. Natural Autoantibody to MUC1 Is a Prognostic Indicator for Non-Small Cell Lung Cancer. Am. J. Respir. Crit. Care Med. 2000, 161, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Wada, H.; Yamasaki, M.; Miyata, H.; Nishikawa, H.; Sato, E.; Kageyama, S.; Shiku, H.; Mori, M.; Doki, Y. High Expression of MAGE-A4 and MHC Class I Antigens in Tumor Cells and Induction of MAGE-A4 Immune Responses Are Prognostic Markers of CHP-MAGE-A4 Cancer Vaccine. Vaccine 2014, 32, 5901–5907. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Ferrone, C.R.; Schwab, J.H.; Ferrone, S. Intracellular Antigens as Targets for Antibody Based Immunotherapy of Malignant Diseases. Mol. Oncol. 2015, 9, 1982–1993. [Google Scholar] [CrossRef]
- Slastnikova, T.A.; Ulasov, A.V.; Rosenkranz, A.A.; Sobolev, A.S. Targeted Intracellular Delivery of Antibodies: The State of the Art. Front. Pharmacol. 2018, 9, 1208. [Google Scholar] [CrossRef]
- Díaz-Zaragoza, M.; Hernández-Ávila, R.; Viedma-Rodríguez, R.; Arenas-Aranda, D.; Ostoa-Saloma, P. Natural and Adaptive IgM Antibodies in the Recognition of Tumor-Associated Antigens of Breast Cancer (Review). Oncol. Rep. 2015, 34, 1106–1114. [Google Scholar] [CrossRef]
- Hunter, D.W.; Krimsky, W.; Meyerhoff, R.R.; Mammarappallil, J.G.; Kaviani, R.; Stoffregen, W.C.; Reisenauer, J. Pulsed Electric Field Ablation Safety and Characterization near Sensitive Structures in Lung: A Preclinical and Clinical Case Series Study. J. Thorac. Dis. 2025, 17, 3689–3701. [Google Scholar] [CrossRef]



| Median Age at Consent [range] | 66 [28, 85] |
| Sex (% patients) Female Male | 14 (50.0%) 14 (50.0%) |
| BMI (mean ± SD) | 26.7 ± 5.6 |
| ECOG Performance Status (% patients) 0 1 2 3 Not Available | 20 (71.4%) 6 (21.4%) 0 (0.0%) 1 (3.6%) 1 (3.6%) |
| Malignancy Group (% patients) Colorectal Neuroendocrine NSCLC Other 1 Renal Sarcoma | 5 (17.9%) 3 (10.7%) 4 (14.3%) 9 (32.1%) 5 (17.9%) 2 (7.1%) |
| Disease Burden at Baseline (% patients) Solitary Oligofocal Multifocal | 2 (7.1%) 8 (28.6%) 18 (64.3%) |
| Total Lung Tumors Ablated with PEF | 42 |
| Mean Tumor Size-Longest Diameter ± SD [range] (cm) | 1.1 ± 0.5 [0.4, 2.4] |
| Mean Number of PEF Activations per Tumor ± SD [range] | 3.4 ± 2.2 [1, 10] |
| Number of Tumors Ablated in the Same Session (% patients) 1 2 3 | 17 (60.7%) 8 (28.6%) 3 (10.7%) |
| Additional Treatment post-PEF before 6mo Imaging (% patients) No Focal or Systemic Treatment Focal Treatment Only Systemic Treatment Only Both Focal and Systemic Treatment | 12 (42.9%) 2 (7.1%) 10 (35.7%) 4 (14.3%) |
| (A) | ||||||
| Patient ID/Sex/Age (yrs) | Malignancy Designation | Disease Burden at Baseline | Total Tumors Identified in the Lung | Number of PEF Ablated Tumors | PEF Energy Delivery Approach | mRECIST Patient Response at Last Imaging up to 6 months |
| A25/77/F | Adenocarcinoma, unknown primary | Solitary | 1 | 1 | Bronchoscopic | PR |
| A23/65/F | Neuroendocrine carcinoid | Oligofocal | 2 | 1 | Bronchoscopic | SD |
| A09/82/M | Oropharyngeal squamous cell carcinoma | Oligofocal | 2 | 2 | Bronchoscopic | SD |
| A03/77/F | Renal cell carcinoma | Oligofocal | 2 | 1 | Bronchoscopic | SD |
| A18/74/M | Renal cell carcinoma | Multifocal | 2 | 1 | Bronchoscopic | PR |
| A06/75/F | Neuroendocrine carcinoid | Multifocal | 6 | 1 | Bronchoscopic | PR |
| A04/76/F | Neuroendocrine carcinoid | Multifocal | 4 | 1 | Bronchoscopic | PR |
| A26/76/F | NSCLC adenocarcinoma; Neuroendocrine carcinoid | Multifocal | >5 | 2 | Bronchoscopic | SD |
| A11/85/M | Papillary thyroid carcinoma | Multifocal | >5 | 3 | Bronchoscopic | SD |
| A02/66/M | Papillary thyroid carcinoma | Multifocal | 5 | 1 | Bronchoscopic | SD |
| A17/64/M | Renal cell carcinoma | Multifocal | >5 | 2 | Percutaneous | SD |
| A30/85/M | Renal cell carcinoma | Multifocal | 2 | 2 | Bronchoscopic | SD |
| (B) | ||||||
| Patient ID | Tumor ID | Tumor Location | Tumor Longest Diameter (cm) at Baseline | Number of PEF Activations | Ablation Coverage (%) | mRECIST Patient Response at Last Imaging up to 6 months |
| A25 | A25_T1 | RUL | 0.99 | 3 | >100% | PR |
| A23 | A23 T1 | LUL | 1.00 | 2 | >100% | SD |
| A09 | A09_T1 | LUL | 1.77 | 6 | >100% | SD |
| A09_T2 | RUL | 0.88 | 1 | >100% | SD | |
| A03 | A03_T1 | RLL | 1.31 | 8 | >100% | SD |
| A18 | A18_T1 | RLL | 1.72 | 3 | >100% | PR |
| A06 | A06_T1 | RML | 1.23 | 5 | >100% | PR |
| A04 | A04_T1 | RML | 1.36 | 7 | >100% | PR |
| A26 | A26_T1 | RML | 1.78 | 4 | <100% | SD |
| A26_T2 | RUL | 0.86 | 2 | >100% | PR | |
| A11 | A11_T1 | LLL | 1.13 | 4 | >100% | SD |
| A11_T2 | RML | 1.10 | 3 | >100% | SD | |
| A11_T3 | RUL | 1.12 | 2 | >100% | SD | |
| A02 | A02_T1 | LUL | 1.57 | 9 | >100% | SD |
| A17 | A17_T1 | RLL | 0.93 | 3 | >100% | SD |
| A17_T2 | RLL | 0.23 | 1 | >100% | SD | |
| A30 | A30_T1 | LUL | 0.86 | 2 | >100% | SD |
| A30_T2 | RUL | 0.41 | 1 | >100% | SD | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Gonzalez, A.; Nafie, E.H.O.; Pastori, C.; Mammarappallil, J.; Seshaiah, P.; Plentl, M.B.; Hatton, B.A.; Neal, R.E., II; Pritchett, M.A.; Reisenauer, J.S.; et al. Six-Month Local Control Rates and Immune Responses After Pulsed Electric Field Ablation in Metastatic Cancer. Cancers 2025, 17, 3495. https://doi.org/10.3390/cancers17213495
Moreno-Gonzalez A, Nafie EHO, Pastori C, Mammarappallil J, Seshaiah P, Plentl MB, Hatton BA, Neal RE II, Pritchett MA, Reisenauer JS, et al. Six-Month Local Control Rates and Immune Responses After Pulsed Electric Field Ablation in Metastatic Cancer. Cancers. 2025; 17(21):3495. https://doi.org/10.3390/cancers17213495
Chicago/Turabian StyleMoreno-Gonzalez, Alicia, Ebtesam H. O. Nafie, Chiara Pastori, Joseph Mammarappallil, Partha Seshaiah, Maria B. Plentl, Beryl A. Hatton, Robert E. Neal, II, Michael A. Pritchett, Janani S. Reisenauer, and et al. 2025. "Six-Month Local Control Rates and Immune Responses After Pulsed Electric Field Ablation in Metastatic Cancer" Cancers 17, no. 21: 3495. https://doi.org/10.3390/cancers17213495
APA StyleMoreno-Gonzalez, A., Nafie, E. H. O., Pastori, C., Mammarappallil, J., Seshaiah, P., Plentl, M. B., Hatton, B. A., Neal, R. E., II, Pritchett, M. A., Reisenauer, J. S., Fernandez-Bussy, S., DiBardino, D., Pua, B. B., & Krimsky, W. S. (2025). Six-Month Local Control Rates and Immune Responses After Pulsed Electric Field Ablation in Metastatic Cancer. Cancers, 17(21), 3495. https://doi.org/10.3390/cancers17213495

