Usefulness of Body Position Change during Local Ablation Therapies for the High-Risk Location Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. RFA Techniques and Devices
2.3. HCC in High-Risk Locations
2.4. Treatment-Assist Techniques for HCC in High-Risk Locations
2.5. Assessment of Treatment Response and Follow-Up
2.6. Statistical Analysis
3. Results
3.1. Patients
3.2. Technical Success of Local Ablation Therapy
3.3. Procedure Time
3.4. Local Tumor Progression
3.5. Intrahepatic Distant Recurrence
3.6. Overall Survival
3.7. Complications
3.8. Association between the Timing of Treatment and Prognosis in the High-Risk Location Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Shiina, S.; Tateishi, R.; Arano, T.; Uchino, K.; Enooku, K.; Nakagawa, H.; Asaoka, Y.; Sato, T.; Masuzaki, R.; Kondo, Y.; et al. Radiofrequency ablation for hepatocellular carcinoma: 10-year outcome and prognostic factors. Am. J. Gastroenterol. 2012, 107, 569–577; quiz 578. [Google Scholar] [CrossRef]
- Shiina, S.; Teratani, T.; Obi, S.; Hamamura, K.; Koike, Y.; Omata, M. Nonsurgical treatment of hepatocellular carcinoma: From percutaneous ethanol injection therapy and percutaneous microwave coagulation therapy to radiofrequency ablation. Oncology 2002, 62 (Suppl. 1), 64–68. [Google Scholar] [CrossRef]
- Tateishi, R.; Shiina, S.; Teratani, T.; Obi, S.; Sato, S.; Koike, Y.; Fujishima, T.; Yoshida, H.; Kawabe, T.; Omata, M. Percutaneous radiofrequency ablation for hepatocellular carcinoma. An analysis of 1000 cases. Cancer 2005, 103, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- Teratani, T.; Yoshida, H.; Shiina, S.; Obi, S.; Sato, S.; Tateishi, R.; Mine, N.; Kondo, Y.; Kawabe, T.; Omata, M. Radiofrequency ablation for hepatocellular carcinoma in so-called high-risk locations. Hepatology 2006, 43, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, K.; Asahina, Y.; Tamaki, N.; Yasui, Y.; Hosokawa, T.; Ueda, K.; Nakanishi, H.; Itakura, J.; Kurosaki, M.; Enomoto, N.; et al. Risk factors for exceeding the Milan criteria after successful radiofrequency ablation in patients with early-stage hepatocellular carcinoma. Liver Transpl. 2014, 20, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.M.; Cui, M.; Yang, W.; Wang, H.; Wang, S.; Zhang, Z.Y.; Wu, W.; Chen, M.H.; Yan, K.; Goldberg, S.N. The 10-year Survival Analysis of Radiofrequency Ablation for Solitary Hepatocellular Carcinoma 5 cm or Smaller: Primary versus Recurrent HCC. Radiology 2021, 300, 458–469. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Liang, P.; Yu, X.; Su, L.; Yu, D.; Cheng, Z.; Zhang, J. Percutaneous sonographically guided microwave coagulation therapy for hepatocellular carcinoma: Results in 234 patients. AJR Am. J. Roentgenol. 2003, 180, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.T.; Wang, L.; Li, M.; Yin, C.; Li, Y.Y.; Nie, F. Clinical Results, Risk Factors, and Future Directions of Ultrasound-Guided Percutaneous Microwave Ablation for Hepatocellular Carcinoma. J. Hepatocell. Carcinoma. 2023, 10, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Takayama, T.; Hasegawa, K.; Izumi, N.; Kudo, M.; Shimada, M.; Yamanaka, N.; Inomata, M.; Kaneko, S.; Nakayama, H.; Kawaguchi, Y.; et al. Surgery versus Radiofrequency Ablation for Small Hepatocellular Carcinoma: A Randomized Controlled Trial (SURF Trial). Liver Cancer 2022, 11, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, A.; Ichiryu, M.; Tazuya, N.; Ochi, H.; Tanabe, A.; Nakahara, H.; Hidaka, S.; Uehara, T.; Ichikawa, S.; Hasebe, A.; et al. Clinical translation in the treatment of hepatocellular carcinoma following the introduction of contrast-enhanced ultrasonography with Sonazoid. Oncol. Lett. 2010, 1, 57–61. [Google Scholar] [CrossRef]
- Masuzaki, R.; Shiina, S.; Tateishi, R.; Yoshida, H.; Goto, E.; Sugioka, Y.; Kondo, Y.; Goto, T.; Ikeda, H.; Omata, M.; et al. Utility of contrast-enhanced ultrasonography with Sonazoid in radiofrequency ablation for hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2011, 26, 759–764. [Google Scholar] [CrossRef]
- Takada, H.; Tsuchiya, K.; Yasui, Y.; Nakakuki, N.; Tamaki, N.; Suzuki, S.; Nakanishi, H.; Itakura, J.; Takahashi, Y.; Kurosaki, M.; et al. Irregular vascular pattern by contrast-enhanced ultrasonography and high serum Lens culinaris agglutinin-reactive fraction of alpha-fetoprotein level predict poor outcome after successful radiofrequency ablation in patients with early-stage hepatocellular carcinoma. Cancer Med. 2016, 5, 3111–3120. [Google Scholar] [CrossRef]
- Minami, T.; Minami, Y.; Chishina, H.; Arizumi, T.; Takita, M.; Kitai, S.; Yada, N.; Inoue, T.; Hagiwara, S.; Ueshima, K.; et al. Combination guidance of contrast-enhanced US and fusion imaging in radiofrequency ablation for hepatocellular carcinoma with poor conspicuity on contrast-enhanced US/fusion imaging. Oncology 2014, 87 (Suppl 1), 55–62. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Limquiaco, J.L.; Lin, C.C.; Chen, W.T.; Lin, S.M. Radiofrequency ablation following artificial ascites and pleural effusion creation may improve outcomes for hepatocellular carcinoma in high-risk locations. Abdom. Radiol. (NY) 2019, 44, 1141–1151. [Google Scholar] [CrossRef]
- Uehara, T.; Hirooka, M.; Ishida, K.; Hiraoka, A.; Kumagi, T.; Kisaka, Y.; Hiasa, Y.; Onji, M. Percutaneous ultrasound-guided radiofrequency ablation of hepatocellular carcinoma with artificially induced pleural effusion and ascites. J. Gastroenterol. 2007, 42, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Iwai, S.; Sakaguchi, H.; Fujii, H.; Kobayashi, S.; Morikawa, H.; Enomoto, M.; Tamori, A.; Kawada, N. Benefits of artificially induced pleural effusion and/or ascites for percutaneous radiofrequency ablation of hepatocellular carcinoma located on the liver surface and in the hepatic dome. Hepatogastroenterology 2012, 59, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Minami, Y.; Chung, H.; Hayaishi, S.; Ueda, T.; Tatsumi, C.; Takita, M.; Kitai, S.; Hatanaka, K.; Ishikawa, E.; et al. Radiofrequency ablation for hepatocellular carcinoma: Assistant techniques for difficult cases. Oncology 2010, 78 (Suppl. 1), 94–101. [Google Scholar] [CrossRef] [PubMed]
- Numata, K.; Fukuda, H.; Nihonmatsu, H.; Kondo, M.; Nozaki, A.; Chuma, M.; Morimoto, M.; Oshima, T.; Okada, M.; Murakami, T.; et al. Use of vessel patterns on contrast-enhanced ultrasonography using a perflubutane-based contrast agent for the differential diagnosis of regenerative nodules from early hepatocellular carcinoma or high-grade dysplastic nodules in patients with chronic liver disease. Abdom. Imaging 2015, 40, 2372–2383. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, M.; Chuma, M.; Hige, S.; Omatsu, T.; Yokoo, H.; Nakanishi, K.; Kamiyama, T.; Kubota, K.; Haga, H.; Matsuno, Y.; et al. Relationship between diffusion-weighted magnetic resonance imaging and histological tumor grading of hepatocellular carcinoma. Ann. Surg. Oncol. 2012, 19, 1302–1309. [Google Scholar] [CrossRef] [PubMed]
- Nakachi, K.; Tamai, H.; Mori, Y.; Shingaki, N.; Moribata, K.; Deguchi, H.; Ueda, K.; Inoue, I.; Maekita, T.; Iguchi, M.; et al. Prediction of poorly differentiated hepatocellular carcinoma using contrast computed tomography. Cancer Imaging 2014, 14, 7. [Google Scholar] [CrossRef]
- Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2018, 68, 723–750. [Google Scholar] [CrossRef]
- Ahn, S.J.; Lee, J.M.; Lee, D.H.; Lee, S.M.; Yoon, J.H.; Kim, Y.J.; Lee, J.H.; Yu, S.J.; Han, J.K. Real-time US-CT/MR fusion imaging for percutaneous radiofrequency ablation of hepatocellular carcinoma. J. Hepatol. 2017, 66, 347–354. [Google Scholar] [CrossRef]
- Maeda, M.; Saeki, I.; Sakaida, I.; Aikata, H.; Araki, Y.; Ogawa, C.; Kariyama, K.; Nouso, K.; Kitamoto, M.; Kobashi, H.; et al. Complications after Radiofrequency Ablation for Hepatocellular Carcinoma: A Multicenter Study Involving 9,411 Japanese Patients. Liver Cancer 2020, 9, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Song, I.; Rhim, H.; Lim, H.K.; Kim, Y.S.; Choi, D. Percutaneous radiofrequency ablation of hepatocellular carcinoma abutting the diaphragm and gastrointestinal tracts with the use of artificial ascites: Safety and technical efficacy in 143 patients. Eur. Radiol. 2009, 19, 2630–2640. [Google Scholar] [CrossRef]
- Rhim, H.; Lim, H.K.; Kim, Y.S.; Choi, D. Percutaneous radiofrequency ablation with artificial ascites for hepatocellular carcinoma in the hepatic dome: Initial experience. AJR Am. J. Roentgenol. 2008, 190, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Hyodo, T.; Korenaga, K.; Murakami, T.; Imai, Y.; Higaki, A.; Suda, T.; Takano, T.; Miyoshi, K.; Koda, M.; et al. Kupffer phase image of Sonazoid-enhanced US is useful in predicting a hypervascularization of non-hypervascular hypointense hepatic lesions detected on Gd-EOB-DTPA-enhanced MRI: A multicenter retrospective study. J. Gastroenterol. 2016, 51, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Numata, K.; Morimoto, M.; Ogura, T.; Sugimori, K.; Takebayashi, S.; Okada, M.; Tanaka, K. Ablation therapy guided by contrast-enhanced sonography with Sonazoid for hepatocellular carcinoma lesions not detected by conventional sonography. J. Ultrasound. Med. 2008, 27, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Kitada, T.; Murakami, T.; Kuzushita, N.; Minamitani, K.; Nakajo, K.; Osuga, K.; Miyoshi, E.; Nakamura, H.; Kishino, B.; Tamura, S.; et al. Effectiveness of real-time virtual sonography-guided radiofrequency ablation treatment for patients with hepatocellular carcinomas. Hepatol. Res. 2008, 38, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.E.; Lee, M.W.; Lim, H.K.; Min, J.H.; Cha, D.I.; Kang, T.W.; Song, K.D.; Kim, M.J.; Rhim, H. The semi-erect position for better visualization of subphrenic hepatocellular carcinoma during ultrasonography examinations. Ultrasonography 2021, 40, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Morgan, T.A.; Maturen, K.E.; Dahiya, N.; Sun, M.R.M.; Kamaya, A. US LI-RADS: Ultrasound liver imaging reporting and data system for screening and surveillance of hepatocellular carcinoma. Abdom. Radiol. (NY) 2018, 43, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013, 48, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Kawamura, Y.; Hasegawa, K.; Tateishi, R.; Kariyama, K.; Shiina, S.; Toyoda, H.; Imai, Y.; Hiraoka, A.; Ikeda, M.; et al. Management of Hepatocellular Carcinoma in Japan: JSH Consensus Statements and Recommendations 2021 Update. Liver Cancer 2021, 10, 181–223. [Google Scholar] [CrossRef] [PubMed]
- Cafarchio, A.; Iasiello, M.; Brunese, M.C.; Francica, G.; Rocca, A.; Andreozzi, A. Emprint Microwave Thermoablation System: Bridging Thermal Ablation Efficacy between Human Patients and Porcine Models through Mathematical Correlation. Bioengineering 2023, 10, 1057. [Google Scholar] [CrossRef] [PubMed]
- Radosevic, A.; Quesada, R.; Serlavos, C.; Sánchez, J.; Zugazaga, A.; Sierra, A.; Coll, S.; Busto, M.; Aguilar, G.; Flores, D.; et al. Microwave versus radiofrequency ablation for the treatment of liver malignancies: A randomized controlled phase 2 trial. Sci. Rep. 2022, 12, 316. [Google Scholar] [CrossRef] [PubMed]
- Poulou, L.S.; Botsa, E.; Thanou, I.; Ziakas, P.D.; Thanos, L. Percutaneous microwave ablation vs radiofrequency ablation in the treatment of hepatocellular carcinoma. World J. Hepatol. 2015, 7, 1054–1063. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zheng, Y.; He, W.; Zou, R.; Qiu, J.; Shen, J.; Yang, Z.; Zhang, Y.; Wang, C.; Wang, Y.; et al. Microwave vs radiofrequency ablation for hepatocellular carcinoma within the Milan criteria: A propensity score analysis. Aliment. Pharmacol. Ther. 2018, 48, 671–681. [Google Scholar] [CrossRef]
- Conrad, M.R.; Leonard, J.; Landay, M.J. Left lateral decubitus sonography of gallstones in the contracted gallbladder. AJR Am. J. Roentgenol. 1980, 134, 141–144. [Google Scholar] [CrossRef]
- Hough, D.M.; Glazebrook, K.N.; Paulson, E.K.; Bowie, J.D.; Foster, W.L. Value of prone positioning in the ultrasonographic diagnosis of gallstones: Prospective study. J. Ultrasound. Med. 2000, 19, 633–638. [Google Scholar] [CrossRef]
- Makino, Y.; Imai, Y.; Ohama, H.; Igura, T.; Kogita, S.; Sawai, Y.; Fukuda, K.; Takamura, M.; Ohashi, H.; Murakami, T. Ultrasonography fusion imaging system increases the chance of radiofrequency ablation for hepatocellular carcinoma with poor conspicuity on conventional ultrasonography. Oncology 2013, 84 (Suppl. 1), 44–50. [Google Scholar] [CrossRef]
- Minami, Y.; Minami, T.; Hagiwara, S.; Ida, H.; Ueshima, K.; Nishida, N.; Murakami, T.; Kudo, M. Ultrasound-ultrasound image overlay fusion improves real-time control of radiofrequency ablation margin in the treatment of hepatocellular carcinoma. Eur. Radiol. 2018, 28, 1986–1993. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, J.Y.; Yu, S.J.; Lee, D.H.; Joo, I.; Yoon, J.H.; Kim, Y.J.; Yoon, J.H.; Lee, J.M. Fusion imaging-guided radiofrequency ablation with artificial ascites or pleural effusion in patients with hepatocellular carcinomas: The feasibility rate and mid-term outcome. Int. J. Hyperth. 2023, 40, 2213424. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Ueshima, K.; Osaki, Y.; Hirooka, M.; Imai, Y.; Aso, K.; Numata, K.; Kitano, M.; Kumada, T.; Izumi, N.; et al. B-Mode Ultrasonography versus Contrast-Enhanced Ultrasonography for Surveillance of Hepatocellular Carcinoma: A Prospective Multicenter Randomized Controlled Trial. Liver Cancer 2019, 8, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Zerbini, A.; Pilli, M.; Penna, A.; Pelosi, G.; Schianchi, C.; Molinari, A.; Schivazappa, S.; Zibera, C.; Fagnoni, F.F.; Ferrari, C.; et al. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Cancer Res. 2006, 66, 1139–1146. [Google Scholar] [CrossRef]
- Zerbini, A.; Pilli, M.; Laccabue, D.; Pelosi, G.; Molinari, A.; Negri, E.; Cerioni, S.; Fagnoni, F.; Soliani, P.; Ferrari, C.; et al. Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response. Gastroenterology 2010, 138, 1931–1942. [Google Scholar] [CrossRef]
Variables | All | High-Risk Location Group | Low-Risk Location Group | p Value |
---|---|---|---|---|
283 nodules (in 230 patients) | 176 nodules | 107 nodules | ||
Age (years) | 76 (56–91) | |||
Male | 161 (70%) | |||
Etiology, HBV/HCV/nonBnonC | 18/127/85 (8/55/37%) | |||
Child-Pugh score, 5/6/7/8/9 | 192/20/10/4/4 (84/8.7/4.3/2/2%) | |||
Platelet < 150 × 103/μL) | 144 (63%) | |||
AFP (ng/mL) | 4.2 (0.80–2657) | |||
DCP (mAU/mL) | 23 (8.0–4721) | |||
Primary/recurrence HCC | 45/185 (20/80%) | |||
Maximal diameter of the tumors (mm) | 12 (4–38) | 12 (4–37) | 12 (5–38) | 0.32 |
Number of nodules, 1/2/3 | 186/78/19 | 122/46/8 (69/26/5%) | 64/32/11 (60/30/10%) | 0.15 |
Tumor location, segment 1/2/3/4/5/6/7/8 | 2/15/23/35/31/46/65/65 (0.7/5.3/8/12/11/16/23/23%) | 1/10/16/22/19/22/40/45 (0.6/5.7/9.1/13/11/13/23/26%) | 1/5/7/13/12/24/25/20 (0.6/5.7/9.1/13/11/13/23/26%) | NA |
Baseline US visibility scale, 1/2/3/4 | 15/52/74/142 (5.3/18/26/50%) | 15/52/59/50 (8/30/34/28%) | 0/0/15/92 (0/0/14/86%) | <0.001 |
Intraoperative US visibility scale, 1/2/3/4 | 0/4/74/205 (0/1.4/26/72%) | 0/4/65/107 (0/2/37/61%) | 0/0/9/98 (0/0/8/92%) | <0.001 |
Treatment-assist techniques | 133 (47%) | 107 (61%) | 26 (24%) | <0.001 |
Body position changing | ||||
Artificial pleural fluid infusion | 48 (17%) | 42 (24%) | 6 (5.6%) | <0.001 |
Artificial ascites infusion | 100 (35%) | 88 (50%) | 12 (11%) | <0.001 |
Fusion imaging | 59 (21%) | 50 (28%) | 9 (8.4%) | <0.001 |
Contrast enhanced ultrasonography | 51 (18%) | 46 (26%) | 5 (4.7%) | <0.001 |
Variables | Odds Ratio | Range | p Value |
---|---|---|---|
Age (years) | 0.96 | 0.86–1.1 | 0.52 |
Male | 0.5 | 0.057–4.4 | 0.53 |
Etiology, virus | 1.1 | 0.25–5.3 | 0.87 |
Child-Pugh score | 1.03 | 0.41–2.6 | 0.95 |
Platelet (×103/μL) | 1 | 0.99–1.01 | 0.99 |
AFP (ng/mL) | 1.01 | 0.99–1.1 | 0.86 |
DCP (mAU/mL) | 1.04 | 0.97–1.1 | 0.29 |
Primary HCC | 1330 | 0-Inf | 0.99 |
Maximal diameter of the tumors (mm) | 1.1 | 0.91–1.3 | 0.31 |
Number of nodules | 0.82 | 0.25–2.7 | 0.75 |
Tumor location, left lobe | 0.96 | 0.18–5.1 | 0.96 |
Tumor location, proximity to adjacent extrahepatic organs | 0.99 | 0.21–4.5 | 0.99 |
Tumor location, proximity to large vessels | 5330 | 0-Inf | 0.99 |
Baseline US visibility scale | 0.96 | 0.43–2.1 | 0.91 |
Intraoperative US visibility scale | 0.59 | 0.12–2.9 | 0.52 |
Output power (W) | 0.98 | 0.90–1.1 | 0.63 |
Treatment-assist techniques Body position changing | 10 | 1.2–86 | 0.034 |
Artificial pleural fluid infusion | 0.78 | 0.15–4.2 | 0.77 |
Artificial ascites infusion | 1.4 | 0.29–6.2 | 0.7 |
Fusion imaging | 0.51 | 0.11–2.4 | 0.4 |
Contrast enhanced ultrasonography | 2.2 | 0.26–19 | 0.48 |
Variables | Phase 1 Group | Phase 2 Group | p Value |
---|---|---|---|
100 nodules | 183 nodules | ||
Maximal diameter of the tumors (mm) | 12 (6–38) | 12 (4–37) | 0.5 |
Number of nodules, 1/2/3 | 67/30/3 (67/30/3%) | 119/48/16 (65/26/9%) | 0.31 |
Tumor location, segment 1/2/3/4/5/6/7/8 | 0/2/2/6/8/9/18/15 (0/2/2/6/8/9/18/15%) | 1/8/14/16/11/13/22/30 (0.9/7.0/12/14/10/11/19/26%) | 0.30 |
AFP (ng/mL) | 4.4 (1.1–454) | 4.4 (0.80–2657) | 0.46 |
DCP (mAU/mL) | 24 (10–4721) | 23 (8.0–1519) | 0.96 |
Baseline US visibility scale, 1/2/3/4 | 2/26/30/42 (2/26/30/42%) | 13/26/44/100 (7/14/14/55%) | 0.012 |
Intraoperative US visibility scale, 1/2/3/4 | 0/1/30/69 (0/1/30/69%) | 0/3/44/136 (2/24/74%) | 0.55 |
High-risk HCC | 61 (61%) | 115 (63%) | 0.8 |
Treatment-assist techniques | |||
Body position changing | 21 (21%) | 112 (61%) | <0.001 |
Artificial pleural fluid infusion | 19 (19%) | 29 (16%) | 0.51 |
Artificial ascites infusion | 21 (21%) | 79 (43%) | <0.001 |
Fusion imaging | 37 (37%) | 22 (12%) | <0.001 |
Contrast enhanced ultrasonography | 15 (15%) | 36 (20%) | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takada, H.; Komiyama, Y.; Osawa, L.; Muraoka, M.; Suzuki, Y.; Sato, M.; Kobayashi, S.; Yoshida, T.; Takano, S.; Maekawa, S.; et al. Usefulness of Body Position Change during Local Ablation Therapies for the High-Risk Location Hepatocellular Carcinoma. Cancers 2024, 16, 1036. https://doi.org/10.3390/cancers16051036
Takada H, Komiyama Y, Osawa L, Muraoka M, Suzuki Y, Sato M, Kobayashi S, Yoshida T, Takano S, Maekawa S, et al. Usefulness of Body Position Change during Local Ablation Therapies for the High-Risk Location Hepatocellular Carcinoma. Cancers. 2024; 16(5):1036. https://doi.org/10.3390/cancers16051036
Chicago/Turabian StyleTakada, Hitomi, Yasuyuki Komiyama, Leona Osawa, Masaru Muraoka, Yuichiro Suzuki, Mitsuaki Sato, Shoji Kobayashi, Takashi Yoshida, Shinichi Takano, Shinya Maekawa, and et al. 2024. "Usefulness of Body Position Change during Local Ablation Therapies for the High-Risk Location Hepatocellular Carcinoma" Cancers 16, no. 5: 1036. https://doi.org/10.3390/cancers16051036
APA StyleTakada, H., Komiyama, Y., Osawa, L., Muraoka, M., Suzuki, Y., Sato, M., Kobayashi, S., Yoshida, T., Takano, S., Maekawa, S., & Enomoto, N. (2024). Usefulness of Body Position Change during Local Ablation Therapies for the High-Risk Location Hepatocellular Carcinoma. Cancers, 16(5), 1036. https://doi.org/10.3390/cancers16051036